\ /1l KO H
{JM’J A\ U
Ve s

AT

IlIiHUI!IIliF

,‘h‘ . __‘ i - s O i) _ "l

Mohammad Noori (mohammad.noori@gmail.com)
ITUSE, Southeast University, Nanjing, PRC, 6 July 2011 N4 SOUTHEAST

UNIVERSITY




Why Structural Health Monitoring?

¢ Significant Growth in Urban Living- More than 50% of S}
the World Population now live in cities. This has
increased the Importance of Urban Systems safety.

¢ Deteriorating Infrastructure

¢ Lifeline Systems Protection Against Natural Hazards

¢ Visual manual maintenance not reliable and
impractical, especially for large, complex structures

The Integrity and Health of a structure, like the human
body, need to be monitored constantly to enhance
safety and to prolong their lifespan.
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How to Do Structural Health Monitoring?

¢ Purpose:

< Monitor the system performance

< Detect damage Improvement of
« Asses/diagnose the structural health | ———>>| Structural Performance
condition and Safety

< Make maintenance decision

¢ Components:
< Data Acquisition

— Damage Interpretation/
< Data Analysis Identification

The 1%t International Workshop on SHM, Stanford University, Sept. 18-20, 1997
The 2™ International Workshop on SHM, Stanford University, Sept. 8-10, 1999
The 3™ International Workshop on SHM, Stanford University, Sept, 2001
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Damage Identification Levels

(Rytter, 1993)

¢ Damage: Changes in the structure that adversely affect
its condition.

< Level 1. Any damage occurs?
(Determination that damage is present in the structure )

<+ Level 2: Where is the damage”?
(Determination of the geometric location of the damage)

<+ Level 3: How severe is the damage?
(Quantification of the severity of the damage)

< Level 4. Can the system still work?
(Prediction of the remaining service life of the structure)
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Key Requirements for Effective, Reliable

Quantitative SHM Strategies

¢ Minimal Dependence on Prior Knowledge of
Structure’s Dynamics - So that It can Be Used for Linear
and Nonlinear Structures

¢ High Sensitivity - So That It Can Identify Minor and
Invisible Damage

¢ Low Sensitivity - To Measurement Noise That is
Inevitable in Real Life Applications
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Major Developments in SHM Since 1990°s

¢ Some Representative Data Interpretation Schemes:

< Modal Based Techniques
< Empirical Modal Decomposition Methods (EMD)/Hilbert-

Huang Transform
< Wavelet-Based Techniques

¢ More Recent Data Analysis Schemes:
< Intelligent Artificial Neural Network Systems
< Support Vector Machines
< Artificial Immune Systems

¢ Other Recent Research Issues/Challenges:
< Uncertainty Quantification & Relevance to SHM

¢ Major Progress in Sensor Technology, Wireless
Networked Sensing, Sensor Development
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A Few Shortcomings of Common Techniques

¢ High Dependence on Modeling

¢ Insensitivity to Local Damage - Need of Large Number
of Sensors

¢ Difficulty for On-Line Application
¢ Vulnerability to Measurement Noise

¢ Biased Towards Linear, Nonlinear or Hysteretic
Structures

Merits and shortcomings of available SHM schemes need to |
be evaluated to provide a basis for selection of appropriate
techniques for future intelligent structures
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Ultimate Goal?

Measurements from other sensors
in the damaged region

Measurement:
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State of SHM in Other Field

DETET
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Maker !

Research for new-generation intelligent aircraft

Advanced wireless sensor network:

- Sensing technology

- Optimum sensor placement
- Data processing techniques
- Effects of uncertainties

Structural Health Monitoring:

- Damage detection

- Damage isolation

- Damage assessment
- Maintenance decision

Structural Control:

- Control devices
- Control algorithms

- Robust Control

- Multi-level control

Major Area
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SHM for UQ/Analysis [y
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What SHM can do for uncertainty
quantification and management ?

in-ﬁlgrr:tdcac;cr? dlirt]i o ‘ e Verification of SF by real data
_ e Find/Adapt pdf
Real experiment! e Reliability Analysis
System-level e Remaining Life Prediction
MC sample response e Early Warning for Unscheduled Inspection

. _ LLUS.E,
Safety Margin, Etc (§0) SOUIHEAST



SHM for Handling Uncertainties

ode-based design -~ Probability-based desig

Deterministic Challenges Probabilistic
design

Selection of
Approach of safety factor (SF) probabilistic model B
Explicit Sl = Approach of probabilias e
Load safety factor of 1.5 e PRIEL I density function =y,

(insufficient data) A-basis/B-basi
it -basis/B-basis
=M What are the other material properties
Conservative decision in part?

all phases of design

Uncertainty

SF Compensates everything: propagation Iy;;eglgent stl;ulstm;eh
e uncertainty in loading Significant wit _tr UFtUI‘ al Healt .
e errors in load and stress calculation computational efforts monitoring can help
e accumulated structural damage for calculation of :
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Classification of SHM Strategies

¢ Detection Capabilities:

a) Global Techniques- Only infer the existence of damage
b) Local Techniques — Assist in locating the damage

¢ Extent of Prior Knowledge Required

a) Model-Based Techniques- Use explicit mathematical
descriptions of system dynamics

b) Non-Model Based Techniques — Rely on signal
processing of measure responses.

Both Model-Based and Non-Model-Based have been
successfully used for damage detection in structural application
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1. Model-based Methodologies-

Classification of SHM Strategies

Damage is regarded as a modification of physical
parameters

Typically rely on parametric system identification using
linear, time-invariant models.

Shortcomings:
o heavy dependence on system modeling

o insensitivity to local damages.

o inherent dependence on stationary measurement data.
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Classification of SHM Strategies

2. Non-model-based Alternatives-

<+ Seek to identify damage from changes in dynamic
characteristics (e.g, natural freq., mode shapes, etc.)

»  Specific patterns or characteristics of vibration response
are associated with different structural conditions

<+ Examples:
o FT, Short-time FT o R
o Time-Frequency Analysis ‘

= Winger-Ville Distribution approach
Empirical Mode Decomposition (Hilbert-Huang Transform),

= Traditional modal analysis, dynamic flexibility

measurements, matrix update methods, Statistical
Pattern Recognition, etc.

=  Wavelet Transform HU«S-E
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3. Artificial Neural Networks- Used for both model-based
and non-model-based damage detection in one of two ways:

Classification of SHM Strategies

/
0’0

L)

Their Pattern Recognition capabilities allow the
identification of damage using response measurements
from damaged and undamaged structures (non-model
based approach)

Their System ID capabilities enable the estimation of
dynamic parameters such as stiffness, mass, and damping
(model-based approach)

o  Most published work on System ID has focused on
parametric modeling using linear, time-invariant models.

o However, ANN capability in non-linear function approximation
has allowed their use in non-parametric modeling and
System ID (e.g. Black Box approach)




1. Wavelet-based Methodologies- (Since mid 1990’s)

Focus of This Seminar- Two Research Areas

<« Wavelet Analysis for Damage Detection(CWT, DWT)

< Wavelet Analysis for detecting sudden & progressive damage
and the effect of measurement noise
o  ASCE Benchmark Study Data

o  Experimental Study with DPRI, Japan

< Wavelet packet analysis, and development of Pseudo Wavelets
(PWT) for System ldentification

A Special Class of Artificial Neural Networks-

<+ Development of an Intelligent Parameter Varying (IPV)
approach- without the limitations of Black Box

< Application in System ID for Base Isolated Systems and SHM of
linear and nonlinear systems

< Experimental verification of IPV for SHM application / SOUTHEAST




1-SHM Research via Wavelet Analysis
¢ Development of a Wavelet Based Approach - for
detecting sudden or progressive damage.

< Using Continuous and Discrete Wavelet Transform

¢ Its Application for data from ASCE Benchmark Study &

<« Use of Wavelet to locate the damage region

<+ Effect of measurement noise

¢ Development of a Pseudo-Wavelet (PWT) - For System
|dentification

¢ Experimental Work - in Collaboration w/ DPRI, Japan

¢ Other Applications (Damage in a composite plate due

to impact) LLUS.E,
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1-SHM Research via Wavelet Analysis

¢ Wavelet is a waveform of effectively limited duration that
has an average value of zero. This means that it must

be a window function: j:”:‘q;(t)‘dt < 00

¢ Its average value is zero.

f:‘P(t)dt iy

¢ It is square integrable or, equivalently, has finite energy.

@)= [ W[ di <o
Generation:

o by explicit formula

o by recursion
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1-SHM Research via Wavelet Analysis

: . |
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1-SHM Research via Wavelet Analysis

¢ Wavelet Transform:

< provides a description of how the spectral content of a
signal changes through time.

< breaks up a signal into shifted & scaled versions of
the original (mother) wavelet, to extract useful
information

< Itis a linear transform- Provides time-scale map of
the signal, scale parameter is inversely proportional
to frequency, has a constant time-frequency window
area, has variable time-frequency window resolution

¢ Types of Transformation:
< Continuous Wavelet Transform

< Discrete Wavelet Transform uu
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1-SHM Research via Wavelet Analysis

Continuous Wavelet Transform

07 )@b) == [FOF(

o |

1
f (@)= [ [0 @.b)W(~7)— dadb

a a

Y —oco—

o a>0 ------ Scaling Factor
o bER ------ Shifting/Translating Factor

® q;(f - b) ----- is a translating & windowing function satisfying

¢ the admissibility condition:

> B ()]
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1-SHM Research via Wavelet Analysis

Two Basic Operations in Wavelet Transform s

"‘m
o Shifting: W(r) — W(¢ - b) T
Wavelet function Shifted wavelet function -
w(z) Wt —b)
Signal
Wavelet Wavelet
S h LUSE,
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1-SHM Research via Wavelet Analysis

¢ Scaling: W(¢) — ‘P(i) T
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1-SHM Research via Wavelet Analysis

Signal: Scaling factor: a = 2’/
S(1) = E Zaj,klpj,k ®) Shifting factor : 5 = 27 k
4 j.kez

The Detail at Level j:
D). = ;aﬁkqg,k (1)

The Approximation at Level J:

4,=YD,

j>J
The Coefficients;

a,, = f SV, . (t)dt

S= A, + D,

= A, + D, + D,

= A; + Dy + D, + Ds

LLU.S.E,
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1-SHM Research via Wavelet Analysis

 Summary of Wavelet Analysis [}
Continuous Wavelet Transform (CWT) || Discrete Wavelet Transform I%"LUW“\«
S (@) = Z Zaj,k‘l'j,k ) e
Wf)(a,b) = % If (t)ﬁ(%)dt o, = jﬁ SO, , ()dt - : m
F@0) = éﬁ(Wf)(a,bm%%dadb W (0)=2wQ k) ke
Details and Approximations Tree-Structure of Data gL

£
I S=A1+D1

Dj ; aj,kqjj,k ()
l_i E =A,+Dy+ D,
EDj r‘a""- I_Ul2 =A;+Dy+ D3+ Dy

j>J

AJ
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1-SHM Research via Wavelet Analysis

0 Appllcatlon for SHM are based on the sensitivity of
conventional wavelets to singularities in the data.

¢ A Damage Detection and Location technique was
developed. Its sensitivity to damage severity,
measurement noise and modeling accuracy was studied.

¢ Damage Metric Used:

A sudden damage = a sudden stiffness loSS ——
an abrupt change in acceleration response — =
local maxima of wavelet transform modulus (Mallat, 1992) | g8
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1-SHM Research via Wavelet Analysis

Damage Detection for Sudden and Progressive Damages
(Hou, Noori, Raymond)
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Damage Detection for Monitoring Progressive Damage

1-SHM Research via Wayelet Analysis
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(sec) 15t mode 2" mode 3" mode
CWT Modal CWT Modal CWT Modal
analysis analysis analysis
5 1.2930 | 1.2932 3.6181 | 3.6234 5.2357 | 5.2360
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1-SHM Research via Wavelet Analysis

¢ Application for ASCE SHM Benchmark Study Data:

4

<« Objectives of the Study:

o use the wavelet approach to detect and locate a damage

In time and space
o apply wavelet analysis for on-line monitoring
o study the sensitivity of the method to damage severity
o study the effect of measurement noise on the results
o study the effect of structural modeling and system ID

U LLU.S.E,
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1-SHM Research via Wavelet Analysis

ASCE Benchmark Study
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1-SHM Research via Wayvelet Analys1s

| ASCE Benchmark Study Data -

(http://www.tbcad.com/paullam/ascebenchmark.asp).

¢ Purpose: test and compare various damage identification
techniques

¢ Structure Description: a 4 story, 2 bay X 2 bay steel-frame
scale prototype structure

¢ Damage patterns: removing bracing elements in the structure-
4 out of 5 damage patterns proposed by ASCE and additional |}
ones considered (e.g. removing all braces on the 3™ floor)

¢ Excitations:
< a low-level ambient wind loading at each floor in the y-direction

< a shaker force applied on the roof at the center column position
in i+j direction
¢ Structure Model: 12 DOF Model and 120 DOF Model LLUSE,




1-SHM Research via Wavelet Analysis

ASCE Benchmark Stuv

Damage pattern

Excitation: a low-level ambient wind | a shaker force appliec-l on the roof at the center
L(;?;?lnfl]go 2; s column position in —1 + J
direction
System Model: 12 DOF 120 DOF 12 DOF 12 DOF
symmetric model asymmetric symmetric asymmetric
model model model

t=0...5 sec. - no damage Scenario I

t=5 sec: - damage pattern 1

(removing all braces in the 1" story )

t=0...5 sec. - no damage Scenario V

t=5 sec. - damage pattern 2

(removing all braces

in the I* and 3™ story)

t=0...5 sec. -no damage Scenario 11 Scenario VII Scenario VI

t=5 sec. - damage pattern 3

(removing one brace in the 1* story)

t=0...5 sec. - no damage Scenario IX Scenario VIII Scenario IX

t=5 sec. - damage pattern 3
(4) one brace in each of 1* and 3™ story.

(5) removing all braces in the 3* story;

Scenario 111

t=0...5 sec. — no damage

t=5 sec: removing all braces in the 4™ story
t=10sec: removing all braces in the 2" story
t=15sec: removing all braces in the 3™ story
t=20sec: removing all braces in the 1* story

Scenario IV

V7 UNIVERSITY



1-SHM Research via Wavelet Analysis

Benchmark Study

¢ A Typical Damage Scenario-

t=0...5 sec. - no damage H
t=5 sec. - damage pattern 2
(removing all braces in the 15t and 3" story)




1-SHM Research via Wavelet Analysis

¢ Damage Pattern 1: Removed all braces, 15 story, att = 5s

Comparison between Fourier spectra
before and after damage

Change in the natural frequencies : —r
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% - :
2 2 2
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X 15 g
10 |
0r
5 ]
0 T T T . T /J
1 2 3 4 5 6 7 8 9 10 11 12 0

50 100 150 200

Vibration mode
omega (rad/s)

< ASCE Benchmark Study
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1-SHM Research via Wayvelet Analysis

Wavelet Analysis for Damage Detection (severe damage)

¢ Damage Pattern 1: Removed all braces, 15 story, att = 5s

Wavelet Details Acceleration Response at Node 15
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1-SHM Research via Wavelet Analysis

Wavelet Analysis for Damage Detection (less severe damage) §

¢ Damage Pattern 3: Removed one braces, 15t story, at t = 5s

Comparison between Fourier spectra of
acceleration at node 15, before and after damage
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1-SHM Research via Wavelet Analysis

Wavelet Analysis for Damage Detection (less severe damage)|

¢ Damage Pattern 3: Removed one braces, 15! story, at t = 5s

Acceleration Response at Nodes 15 .
- - T T Zoom in B o e e
2 s
-20 - ' ' ' ' ' i ' : = / =
0 1 2 3 4 5 B 7 a8 9 10 -10 - . y L L «
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1-SHM Research via Wayvelet Analys1s

Wavelet AnaIyS|s for On Line Damage Detection

DD40 y
o

¢ Damage Pattern- Removing:

all braces of the 41" story att = 5s

- i . |
+ all braces of the 2" story att = 10s ’g? I |
s o0 5 10 15 20
+ all braces of the 3 story att=15s £ Time (s)
=
+ all braces of the 1st story att = 20s i 1] |
N Op i |
= .

DD13 y
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2L . . . .
NI T
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UNIVERSITY




Wavelet Analysis for On-Line Damage Detection
(Hera, Hou, and *

Noori

1-SHM Research via Wavelet Analysis
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1-SHM Research via Wayelet Analysis

Wavelet Analysis for Measurement Noise Effect.

¢ Damage Pattern 2: Removed all braces, 15t & 3 story, t = 5s

Wavelet Level1 Details
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1-SHM Research via Wavelet Analysis

Summary of Wavelet Analysis for ASCE Benchmark Study §

¢ A sudden structural damage and the moment when it occurs
can be detected

¢ The region where damage occurred can be identified

¢ The wavelet approach has potential for an on-line application.

¢ Effectiveness of wavelet approach depends on the
measurement noise level and damage severity.

measurement data are required in the analysis. LLUSE

AT
(§0) SOUIHEAST



1-SHM Research via Wayvelet Analys1s

Pseudo —Wavelet Transform

¢ The main capability of Wavelet is due to sensitivity to
singularities (sudden stiffness loss). How about if the |
measurement did not include the moment when a sudden R
damage occurred?

s DeVelopment of a Pseudo —Wavelet Transform-
Based technique (PWT) for System Identification

¢ To use two segments of data, before and after damage, to
identify the change of the system parameters:

> natural frequencies

>  modal damping ratios

> o

UNIVERSITY



1-SHM Research via Wavelet Analysis

System Identlflcatlon Vla Pseudo—WaveIet Transform

¢ Concept of Pseudo-wavelet was developed based on
shifting and scaling properties of regular wavelet.

¢ Pseudo-wavelet Transform was used to successfully identify g
system natural frequencies and damping ratios.

¢ Truncated Pseudo-wavelet was proposed to improve

dynamic systems.

¢ Noise effect was investigated for both measurement &
excitation: satisfactory results were obtained.

(§2) SQUIHEAST



System Identification Via Pseudo—Wavelet Transform

A Pseudo-wavelet

%
W,

W (w:w5.5,) = B
J

Pseudo-Wavelet Transform

Cr(y.50) = [Fl)W (w0, & b
0

Application to a 3DOF system
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1-SHM Research via Wavelet Analysis

\i
Estimated damping and stiffness parameters \\\\\l H O\
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1-SHM Research via Wavelet Analysis

System Identification Via Pseudo—Wavelet Transform

Experimental Validation Using Shaking Table Test Data of
A Full-size Two-Story Wooden House (Hou, Noori, Suzuki)
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1-SHM Research via Wavelet Analysis

System Identlflcatlon Vla Pseudo—WaveIet Transform

Noised Signal Fourier Spectrum
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1-SHM Research via Wavelet Analysis

Identification of Impact Loading on A Composite Plate

|ldentified impact location (x=0.5. v=0.7 unit)
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A composite plate impacted at a point with x=0.5 and y=0.7 unit ,



1-SHM Research via Wavelet Analysis
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Suggestions for Future Wavelet-based SHM Research

¢ Further Extension of the wavelet-based technique for a
progressive damage pattern;

¢ Development of wavelet-based indices for health assessment,
service life prediction, maintenance decision;

¢ Comparative study with other approaches, e.g., the empirical
mode decomposition, neural network, and Hilbert transform,;

¢ Improvement PWT-based system identification for cases where
peaks in the Fourier amplitude response are not well separated. s

¢ Develop a wavelet transform that can detect the instance of damage |
occurrence under broad-band random excitation.

¢ Develop a wavelet-based local damage observer using data from a
single or very small number of sensors to detect occurrence of

damage in a local critical region. (Progressive damage, Noise effects LLU.
Auto-diagnosis algorithms, Warning systems, etc.) SOUTHEAST




Suggestions for Future Wavelet-based SHM Research

Develop an integrated wavelet-based scheme for SHM of large-,
scale structural systems using local measurements

Develop a wavelet-based damage isolator to locate damages

using measurements from multiple sensors. (Damage influence
reqion, Damage isolation algorithms, Optimal sensor placement? eftc.)

Develop an integrated damage estimator to assess local

damage severity (Wavelet-based modal analysis for time-varying
systems?)

An integrated wavelet-based EMD scheme and a NN-based on-
line approximation technique, etc.)

Develop condition-based maintenance guidelines (Structural
Health history, health condition indices, etc.)

< SOUTHEAST




2-SHIM Research via Artificial. Neural Networks

+ Motivation of the Research-

To develop a reliable structural health monitoring and damage

detection technique that can detect the:

# Presence
# Location, and
# Time of damage

from recorded structural responses using ANN, traditional
modeling, and system identification techniques.

What are the main building blocks of such a technique?

I.  Traditional modeling techniques
ii. Traditional system identification techniques

ili. Artificial neural networks LLUS.E,
.} SOUTHEAST

UNIVERSITY



2-SHIM Research via Artificial. Neural Networks

+ Challenges of the Research-

# ANN typically involve I/O training to predict the dynamic
response of a “healthy” structure to known input excitations.

# This predicted response is compared to the response of the
same damaged structure to infer information about the
presence, location, and extent of damage.

# Such methodologies, however, may fail to detect:

o authentic damage if the response of the damaged structure
moves beyond the representative domain of the trained neural
network.

o few research has addressed the detection of damage in
systems with elasto-plastic and hysteretic restoring force

characteristics. - LLUSE,
7)) SOUTHEAST




2-SHIM Research via Artificial. Neural Networks

4+ Outline of the Research Presentation:

# Development of an Intelligent Parameter Varying (IPV)

Method - combining the advantages of Parametric Models with
Non-Parametric Capabilities of ANN.

# Application for System Identification of Structures with
inherent nonlinearities

# Application in SHM - For detecting presence, location and
time of damage in linear and nonlinear systems

# An Experimental Study — For system identification and damage §
detection in linear and nonlinear systems.

LLUSE,

AT
(§§0) SOUTHEAST



2-SHIM Research via Artificial. Neural Networks

Outcome of the Research- IPV A Unique nonlinear System ID.

# Detects damage in nonlinear structures under seismic excitation

# Integrates capabilities of non-parametric radial basis function ANN, (RFBN)
with a traditional parametric model to identify nonlinear, time varying
system dynamics (e.q. inelastic and hysteretic restoring forces)

# Provides functional representations of the system nonlinearities without
prior knowledge of their constitutive characteristics

# Reveals the evolution of damage through the identification of restoring
forces, rather than comparing response characteristics to a “healthy”
reference state.

# Uses recorded inter-story relative accelerations as network inputs, avoiding |
the challenges of integrating acceleration responses (Contrary to ANN
techniques requiring inter-story relative velocities and displacements.

# The performance of this IPV approach in determining the existence,
location, and extent damage shows advantages over wavelet analysis LLU.




2-SHIVI: Research via Artificial Neural Networks

+ Background- Traditional Modeling Techniques-

“White box” “Gray b_ E- ' ’%‘ m‘

Fully derived from the first principles

SOUTHEAST




2-SHIVI: Research via Artificial Neural Networks

+ Background- Traditional Modeling Techniques-

“White box” “Gray _ E- ~ Um // .

!

Solely based on the recorded data

>3 SOUTHEAST




2-SHIVI: Research via Artificial Neural Networks

+ Background- Traditional Modeling Techniques-

“White box” “Gray b_ E- ' ’%‘ m‘

!

A mixture of “white box~ and “black box” models




2-SHIM Research via Artificial. Neural Networks

# System ID is the process of building mathematical models of a
dynamic system based on measured data.

# How It Is Done? By adjusting parameters within a given model until E5 .-
its output coincides as well as possible with the measured output. =

# How Do We Know the Model is Good? Comparing the output of
the model to measurements on data set that was not used for
identification process.

# What Types of Models Can Be Used? Difference equation
descriptions (ARX, ARMAX), all types of linear state-space models,
black box nonlinear structures (Artificial Neural Networks), etc.

parametric models Yes. SOUTHEAST




2-SHIVI: Research via Artificial Neural Networks

System ID consists of four basic steps:

1.

2
5
4

Gathering experimental data
Choosing a set of candidate models
A criterion for selecting the best-fit model

An iterative optimization process, searching for the best-fit model

LLU.S.E,
SOUTHEAST

UNIVERSITY




2-SHIVI: Research via Artificial Neural Networks

Parametric

!

Find “optimal parameters” of a “white box” model

x=filou)x+f,(cu)u X = ax + bu

. i -

LLU.S.E,
, SOUTHEAST

UNIVERSITY




2-SHIM Research via Intelligent Parameter:

Varying (LEV)rAxtiicialiNcural N etworks

+ Background- Traditional System Identification Techniques &

Parametric

Find “optimal functional representation” of the system using
a “black box~ model

x=filou)x+f,(cu)u x= flxu)
= i e

LLUS.E,
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2-SHIM Research via Artificial. Neural Networks

+ Background- Artificial Neural Networks (ANN)

# ANN has been inspired by the information processing in the brain.
Because of their unique capabilities in nonlinear function —
approximation, ANN can be ideally suited for modeling and system ID.

# Literature shows how ANN can be effectively used for modeling, ID,
and control of nonlinear dynamic systems.

# Nomenclature-
O Neuron — an information processing unit
O Synapse of connecting path- connecting the neurons

o Activation function- computes the output of a a neuron
according to input activation level

o Training set- Data used to train the network
Learning rule- algorithm used for testing the network
O Testing set- data used for testing the network

O

< SOUTHEAST
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+ Background- Artificial Neural Networks (ANN)
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2-SHM Research via Artificial Neural Networ

+ Background- Artificial Neural Networks (ANN)

Structure of a neural network
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T bkl
‘ -l"r"-u" "";‘1“;

| | I/} e Ix*

— LLUSE
‘N7 SOUTHEAST

V4 UNIVERSITY



2-SHIVI: Research via Artificial Neural Networks

+ Background- Artificial Neural Networks (ANN)
1. Inspired by information processing in the brain
11. Learn from their environment

Hidden Layer

Input Layer Output Layer &

LLUS.E,

AT
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2-SHIVI: Research via Artificial Neural Networks

+ Background- Artificial Neural Networks (ANN)

1. Inspired by information processing in the brain
11. Learn from their environment
111. Radial Basis Functions Networks

LLU.S.E,
7) SOUTHEAST

UNIVERSITY




+ Background- Artificial Neural Networks (ANN)

"Black box" Approach

INetworks

u(kT - 1) Backpropagation e(kT)
: of Error
: : ,
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|
Sample Sample
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u(t) > System
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+ Background- Artificial Neural Networks (ANN)

"Black box" Approach
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+ Background- Artificial Neural Networks (ANN)

"Black box" Approach




SEIVIBRES TGRS iGN EUEal Networks

+ Background- Artificial Neural Networks (ANN)

"Black box" Approach
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+ Background- Artificial Neural Networks (ANN)

Intelligent Parameter Varying Approach
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2-SHM Research via Intelligent Parameter
Varying (IBV) Arxtificial Neural Networks

+ Proposed Method-

Traditional
Parametric Modeling
Techniques

Intelligent Parameter

Varying Technique

Traditional
System ID
Techniques

Artificial Neural
Networks

LLUS.E,
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Concept:

Parametric

Combines the advantages of parametric and non-
parametric techniques ;

= filou)x+ filxu)u =) oot gui b r.

y=4X y=X
LLUSE.
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2-SHM Research via Intelligent Parameter:

Varying (IPV) Artificial Neural Networks

Comparison with Black Box M
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2-SHM Research via Intelligent Parameter:

Varying (IPV) Artificial Neural Networks

Comparison with Black Box .l
Concept:

Backpropagation
of Error

u(kT - ])

u(kT.— n, )

Sample Sample
& Hold & Hold

LLU.S.E,
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2-SHM Research via Intelligent Parameter

Varying (IPV)Arificial Neural Netiorks

Implementation

Consider:

i. Asimple three-story “shear building” model

ii. Elastic, Elasto-plastic, & Hysteretic restoring force models :

lii. Two damage mechanisms

iv. El Centro 1940 earthquake ground acceleration and 3-Hz| °"*~=’
sinusoid base excitations

LLUS.E,
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2-SHM Research via Intelligent Parameter

Varying (IPV)Arificial Neural Netiorks

Sh Building Model Hrd
ear ouliding ivioae 3 FIOOT %i X3 -
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Restoring Force Model

Restorklg Force

>
Relative
Displacement

LLU.S.E,
SOUTHEAST

UNIVERSITY




2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Restoring Force Model

Restorrg Force

>
u, Relative
Displacement

LLU.S.E,
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Restoring Force Model T~

Restoring Force

k=0

> ;
u, Relative i -—"
Displacement skl
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Damage Mechanisms

The 1%t damage mechanism

Restoring Force Restoring Force
. A i

R U, Relative
L’ Displacement
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Damage Mechanisms

The 2™ damage mechanism

Restoring Force Restoring Force
A A | _
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2-SHM Research via Intelligent Parameter

Varying (IPV) Arxtificial Neural Network

Simulations
Simulation Base Restoring
Damage Mechanism
Case Excitation Force Model
I 3-Hz Sinusoid
The 1 damage mechanism.
I El Centro 1940
Elastic
I 3-Hz Sinusoid The 2 damage mechanism followed by the 1% damage
IV El Centro 1940 mechanism.
Vv 3-Hz Sinusotd
Elasto-plastic
VI El Centro 1940
The 1 damage mechanism.
VI 3-Hz Sinusoid _
Hysteretic
VIII El Centro 1940
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Network of the 3™ Floor
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Network of the 2"9 Floor




Network of the 1stFloor
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2-SHM Research via Intelligent Parameter
_ Varying (IPV) Artificial Neural Networks

A Few Important Criteria/Factors: For details see Saadat, 2003.

The IPV was applied to the acceleration responses of Cases I-VIII to identify the
Presence, Location, and Time of Damage.

# IPV incorporated RFBN into the parametric model (governing egns of
motion) to identify the restoring forces. The stiffness and damping were
combined into net restoring forces R1, R2, R3

#  For a single-output RFBN with N hidden layer neurons, there are 3
parameters that determine the network output: The network weights, w
and the neuron centers ¢ (N-element vectors), the neuron spreads, s.

# Input to each RBFN have different ranges, thus they were normalized
and 3 basis functions were uniformly distributed along normalized
dimensions of each input with centers located at —0.25, 0.5 and 1.25,
resulting in 27 basis functions for each RBFN. The spread of each
basis function was specified to be 5.0 (3 times the largest distance
between basis functions)



2-SHM Research via Intelligent Parameter
Varying (IBV) Artificial Neural Networks
Other Important Criteria/Factors: For details see Saadat, 2003.

#  IPV identifies restoring forces and damage mechanisms without a priori
knowledge or assumptions reqarding the constitutive characteristic.

#  Since the identified restoring forces are represented by and stored in its
network weights, all network weights, w, were initialized to zero.

# To ensure that RFBNs properly generalized information from the
acceleration responses, for each simulation case (I to VIII) the data
(time samples of ground acceleration and resulting floor accelerations)
was divided into training and testing (validation) sets.

# Each training data set consisted of one half of the simulated time
history, each time sample selected randomly from the simulation data.
The remaining half of time samples were randomly ordered and used to
construct the testing (validation) data set.

) SOUTHEAST




2-SHM Research via Intelligent Parameter
_ Varying (IPV) Artificial Neural Networks

Other Important Criteria/Factors: For details see Saadat, 2003.

# A standard back-propagation of error training algorithm, based on
quadratic error cost function, was implemented for training. This
training set was implemented in a systematic manner.

#  Training continued until the error cost function, evaluated based on
prediction errors from the testing data set, fell below 15 over two
consecutive training epochs, where one epoch continue the use of all
time samples in training data set to modify the network weights w.

#  Samples of the “identified” restoring forces and “simulated” restoring
forces for Cases I-VIII are presented in the following. The evolution
force-displacement characteristics shows the presence of damage.

#  To precisely isolate and identify the occurrence of damage and the time
of damage, the IPV was implemented in a “snapshot mode,” where
response data was divided into 1-second time intervals and restoring
forces were “identified.”

< SOUTHEAST




2-SHM Research via Intelligent Parameter

arying (I.PV) _rtiﬁcialNeual Networks .

Implementation of the radial basis functions networks
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2-SHM Research via Intelligent Parameter

arying (I.PV) _rtiﬁcialNeual Networks .

Implementation of the radial basis functions networks
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2-SHM Research via Intelligent Parameter

arying (I.PV) _rtiﬁcialNeual Networks .

Implementation of the radial basis functions networks
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2-SHM Research via Intelligent Parameter

# Damage Quantification-

o Basic idea is monitoring the change in the response of the
structure, caused by a change in the restoring forces. Thus, the
percentage of the change in the response of the systems can be
used to develop a measure for quantification of the damage.

# Endurance Estimation-

o Basic idea is simulating the structure after occurrence of the
damage with an excitation of x% of the original one in order to
compare the new structural response against the pre-defined
threshold.

Once the time and location of a damage in the system is determined
one must identify the severity of the damage and consequently
estimates the remaining life of the structure.



Pre-processing
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2-SHM Research via Intelligent Parameter

Varying (IPV) Arxtificial Neural Network

Simulations
Simulation Base Restoring
Damage Mechanism
Case Excitation Force Model
I 3-Hz Sinusoid
The 1 damage mechanism.
I El Centro 1940
Elastic
I 3-Hz Sinusoid The 2 damage mechanism followed by the 1% damage
IV El Centro 1940 mechanism.
Vv 3-Hz Sinusotd
Elasto-plastic
VI El Centro 1940
The 1 damage mechanism.
VI 3-Hz Sinusoid _
Hysteretic
VIII El Centro 1940




2-SHM Research via Intelligent Parameter:
Varylng (IPV) Artificial Neural Networks

Case | 8
w o il
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Restoring force initially elastic and remains elastic but “softens”  (Xgz) SOUIHEAST




2-SHIM Research via Intelligent Parameter:

Varying (LEV)rAxtiicialiNcural N etworks

1-Second

Case |

3-Hz sinusoid
Elastic
3.5—-4.5sec
(a): Vs. Disp.
(b): Vs. Time

Shows the time the restoring force starts to “soften”
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2-SHM Research via Intelligent Parameter

Varylng (LBV) Arxtificial Neural Networks

Estlmated restoring forces and Damage Propagation

0.5F 9 0.5F

Case V —

3 Floor
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Case VI -
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Figure 4.12: Identified (o) and actual (-) net restoring forces (N):
(a) Case V, (b) Case VI.
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Restoring force initially elastic but severely softens and plastic deformation §




2-SHM Research via Intelligent Parameter

Varylng (LBV) Arxtificial Neural Networks

| 1 Second snapshot of the estlmated” restorlng forces Tlme of damage
occurrence. Changes in restoring force characteristics readily identified.

11
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3 Floor
e} o

Case I'V- -l
El Centro 1940
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I ORSEE
(a): Vs. Disp.
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Relative displacement (mm) Time (sec)
(a) (b)
Figure 4.15: Snapshots of identified restoring forces (N) for Case I'V:
(a) vs. relative displacement, (b) vs. time, before and after damage (o) , 3.5-4.5 seconds.
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Estimated restoring forces and Damage Propagation
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Relative Displacement (mm)

Primary column stiffness already reduced due to previous structural
damage, and excursion into hysteretic behavior.



2-SHM Research via Intelligent Parameter:

Varying (IPV) Artificial Neural Networks

1-Second “snapshot” of the “estimated” restoring forces. Time of damage
occurrence. Changes in restoring force characteristics readily identified.

0.4 ] 0.4
5 0.2 1 5 o2
K= L
Case VIII a o g °
™ -0.2 1 ™ -02
El Centro 1940 T 0 0.1 02 Plss 14 145
0.4 1 0.4
Hysteretic 3 o2 i . o-zW
w o 1 [TH 0
o 02 1 g, -02
13.5—-14.5 sec ™ oa | -0.4 | .
-0.4 0.2 0 0.2 0.4 1355 14 14.5
(a): Vs. Disp. 0.4 0.4
"g 0.2 'g 0.2
(b): Vs. Time 5 os 5 o
-0.4 ‘ | . -0.4 | |
0.5 0 0.5 135 14 145

Relative displacement (mm) Time (sec)
(@) S

Shows additional softening from structural damage at 14.004 and
14.142 seconds, and hysteretic degradation/damage.
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2-SHM Research via Intelligent Parameter

Varylng (LBV) Arxtificial Neural Networks

Effects of ANN parameters on the IPV Technique

 Gaussian basis functions parameters

I.  Number
il. Location, and

iii. Spread of the basis functions

[PV accuracy is measured by

i.  Error cost function on the test set, and

ii. Total number of the training epochs

o LEUS.E,
(§2) SOUTHEAST



2-SHM Research via Intelligent Parameter

Varying (IPV) Arxtificial Neural Network

Local: their support covers a small range of input space
giving weighted local averages in input space.

1

0.9 -

0.8 |-

0.7 |-

0.6 -

«w 0.5

0.4 -

0.3 -

0.2

0.1

(0]
-10 -8 -6

Net input to the neuron
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2-SHM Research via Intelligent Parameter

Varylng (IPV) Art1ﬁc1al Neural Networks

Basis Functions

Global: their support covers a large range of input space
allowing the dispersion of properties of the estimated
function.

1 k

0.9 -

0.8 -

Net input to the neuron MUM
| , SOUTHEAST

UNIVERSITY




2-SHM Research via Intelligent Parameter

Varying (IPV)Artificial Neural Netorks

Basis Functions

Location of the basis functions:

— Fixed:

 the basis functions can be chosen in a random or
uniform fashion from the input data space depending
on the distribution characteristics of data.

— Float:

« the basis functions can be chosen in a self-
organized fashion or supervised learning process.




2-SHM Research via Intelligent Parameter
_ Varying (IPV) Artificial Neural Networks.

Learning Algorithms

Neural networks can be classified based upon Learning
algorithm used for updating the weights,

Error-Correction Learning
Hebbian Learning
Competitive Learning
Boltzman Learning
Supervised Learning
Reinforcement Learning
Unsupervised Learning
And more

B e O O O O
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2-SHM Research via Intelligent Parameter
_ Varying (IPV) Artificial Neural Networks,

A Total of 1792 simulations were conducted (224 for each of the 8 cases) |

% Simulations for each case arranged into two sets according to the no.
of Gaussian basis functions for the networks applied for each floor.

% For the 1st & 2nd simulation sets 2 and 3 basis functions used along
normalized input space dimensions, resulting in a total of 23=8 and
33=27 basis functions for each network, respectively.

% Each group was divided into 4 groups according to the Gaussian
basis function locations, where each group consisted of 28
simulations for different Gaussian basis function spreads, ranging
from 0.0625 to 40.0.

< SOUTHEAST



2-SHM Research via Intelligent Parameter:

Varying (IPV) Artificial Neural Networks

Number and location of Gaussian basis functions for
Simulation Set 1, Groups I to IV.
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2-SHM Research via Intelligent Parameter
PV) Artificial Neural Networks
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Effects of bas1s functlon sﬁréads oﬂ error cost functloh,
Simulation Case 111, for Simulation Set 1 and Set 2

10* : ! ! 10°

| E— ................... ................. i | — ................... ................. |

Case VIII
El Centro 1940
Hysteretic

Error Cost Function on the Test Set
Error Cost Function on the Test Set

(a): 2 basis functions

(b): 3 baSiS ﬁlnCtionS 10_80 1i0 2I0 3I0 40 10-80 1I0 2|0 3i0 40
2 0]

{2\ . ) : {h\ | MUM

Decreasing/Increasing in error cost function as Gaussian basis
asSIng SINg 7) SOUTHEAST
function spreads increase. UNIVERSITY




2-SHM Research via Intelligent Parameter

Varying (IPV)Arificial Neural Netiorks

Total number of the training epochs

epochs, Simulation Case 111, Simulations Sets 1 and 2.

10°

Case VIII
El Centro 1940

Hysteretic

Total Numner of the Training Epochs

(a): 2 basis functions

(b): 3 basis functions

-
OM
T

10' W/
¥

Total Numner of the Training Epochs

10°

10"

Decreasing/increasing in computational time due to dependency on

Gaussian basis function spreads.
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2-SHM Research via Intelligent Parameter

Varying (IPV)Arificial Neural Netiorks

Spread of Gaussian basis functions are important- Gaussian
basis function over the normalized input with different
spreads, located at 0, 0.5 and 1.

1 e ———— 1 | —— 1

°
©

0.8 - 0.8¢K

o
o

0.6 R 0.6

0.4} - 0.4} - 0.4

The Gaussian basis function

(a): Gaussian at 0

(b): Gaussian at 0.5

©
N

0.2} - 0.2}

0 0

L L L
0 0.5 1 0 0.5 1 0 0.5 1

. Normalized Input Normalized Input Normalized Input
(c): Gaussian at 1 (a) (b) (©)

As the Gaussian basis function spreads increases, the changes in o LLUS.E,
function value over the range 0 to 1 becomes smaller. ‘% SOUTHEAST

"L UNIVERSITY



2-SHM Research via Intelligent Parameter

Varying (IPV)Arificial Neural Netiorks

Weight distribution of the radial basis functions networks for
Simulation Case VIII. 2 Gaussian basis functions at 0 and 1.

VI=
Case VIII
El Centro 1940

Hysteretic
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2-SHM Research via Intelligent Parameter
_ Varying (IPV) Arxtificial Neural Networks:

Weight distribution of the radial basis functions networks for
Simulation Case VIII: 2 Gaussian basis functions at 0 and 1.

23=8§
Case VIII
El Centro 1940

Hysteretic
o=10

2" Floor 39 Floor

18t Floor

50

0

-50

50

0

-50

50

-50

3 7 5 6
Netwrok weights 1 through 8




2-SHM Research via Intelligent Parameter
Varying (IBV) Artificial Neural Networks,

3 Floor

3 =7
Case VIII
El Centro 1940

Hysteretic
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2-SHM Research via Intelligent Parameter
~ Varying (IPYV) Artificial Neural Networks:

Weight distribution of the radial basis functions networks for
Simulation Case VIII: 3 Gaussian basis functions at 0, 0.5 and 1.

20 t t T T T ]
I -
L5 -..___IIIIII---___III:
: i : % 5
: I
33:27 8& ol -. -_. i .I._- l- II-
AN 20
Case VIII 5 5 i %
El Centro 1940 . = I |
2 oL -I -. -_.I . - .
Hysteretic % i o I. =" .- II.

0 5 10
o=10 Netwrok weights 1 through 27



2-SHM Research via Intelligent Parameter

These results suggested selection of

+»» Two Gaussian basis functions

“ Located at the limits of normalized input range, with

% Spreads of 10

LLU.S.E,
SOUTHEAST

UNIVERSITY




2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Estlmated restormg forces- Wlth changes to the no. of
Gaussian basis functions and their spread.

Case |

3-Hz sinusoid

Elastic

Relative Displacement (mm)

LLU.S.E,
7) SOUTHEAST

UNIVERSITY




2-SHM Research via Intelligent Parameter:

Case |

3-Hz sinusoid
Elastic
3.5-4.5sec
(a): Vs. Disp.
(b): Vs. Time

2" Floor 3 Floor

AN ON &

15t Floor

U
N = Q = N

2 - 0 1 2
Relative displacement (mm)

(@)

Varying (IPV) Artificial Neural Networks

" 1-second “snap shot” forces

2" Floor 3 Floor

w AN ON s

15t Floor

,, I \‘
\ l!,!mm}k

21 i' | N

1 L

0 L

1} ]

-2 B ) i

35 4 45 e
o B

Time (sec)
N
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Estimated restoring forces

Case VIII é: °r
El Centro 1940 %

Hysteretic

Relative Displacement. (mm) }
UuSulB,

67 SOUTHEAST

/) UNIVERSITY




2-SHM Research via Intelligent Parameter:
Varying (IBV) Arxtificial Neural Networks

Case VIII 5 o / : o W
El Centro 1940 kS o |

. . . X , -0.4
-0.2 -0.1 0 0.1 0.2 13.5 14

3 Floor

Hysteretic |
13.5 - 14.5 sec z
(a): Vs. Disp.
(b): Vs. Time

-0.2
-0.4

[ T o] [ T ]
S s N o oa
2" Floor

[ T ]
o N B

-0.2
-0.4
05 0 05 13.5 14
Relative displacement (mm) Time (sec)

@ ISy
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o o
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2-SHM Research via Intelligent Parameter

Varylng (LBV) Arxtificial Neural Networks

Improvement in IPV accuracy and required computational
time. Arbitrary RFBN parameters: Blue bar; Optimized RFBN
parameters: Red bars.
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2-SHM Research via Intelligent Parameter

arying (I.PV) _rtiﬁcialNeual Networks .

Effects of Measurement Noise on the IPV Technique

Noise 1s an undesired disturbance within the frequency band of
interest, introduced by man-made and natural sources that distort the g i
information carried by the signal. The following equation is used whysi =
1dentifying signals subject to measurement noise.

SNR =10-log :
Total Noise Power

Peak Signal Power )

6.02 (dB) = SNR < 40.0(dB)

LLUSE,
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2-SHM Research via Intelligent Parameter
Varymng (IEV)Artificial Neural Networks

Estimated restoring forces in a noisy environment

3" Floor

Case VIII
El Centro 1940

2" Floor

Hysteretic
SNR = 6.02 (dB)

1%t Floor

Relative Displacement' (mm)

SOUTHEAST
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2-SHM Research via Intelligent Parameter

Varying (IPV) Artificial Neural Networks

Estimated restoring forces

Case VIII
El Centro 1940

Hysteretic
SNR =40.0 (dB)

2" Floor 3" Floor

15! Floor

-0.5h

05

05F

. + e iBithe, ' I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2
Relative Displacement (mm)
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2-SHM Research via Intelligent Parameter:
Varylng (IPV) Artificial Neural Networks

Case VIII

El Centro 1940
Hysteretic

SNR = 40.0 (dB)
(a): Vs. Disp.
(b): Vs. Time

3 Floor
5 &

2" Floor
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o o
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2-SHM Research via Intelligent Parameter:

Varying (IPV) Art1ﬁc1al Neural Networks

Effects of Measurement Noise on the IPV Technlque o |
° \\\\‘ ‘“,;iului
*  What SNR level is acceptable? - .‘L’“‘““]m"\
§ 0.8 / | //
m -
T 06 ,,/ ‘
™ e -
Case VIII i - T
1 —
El Centro 1940 5 o0n 7
TR Py
Hysteretic Y -
o.z:o v 4
50 e
£ —
- 0.4
10° 10’ 10°
SNR (dB)

LLU.S.E,
) SOUTHEAST

"t UNIVERSITY

Cross-Correlation factors between i1dentified and actual
values of net restoring forces vs SNR: Case VIII.




Conclusions and Summary.

< A simple yet powerful technique that can

|dentify the instance of the damage occurrence

|dentify the substructure where the damage is located
Quantify the extent of damage, from system parameters
Estimate the remaining life of the structure

Can be applied to non-linear time-varying systems
Be robust with respect to measurement noise
Can be tailored/parameterized accordingly (Model/System ID Based)

"
2
S
4
5. Can be implemented solely in time domain
6
7
8
9

Be used in both deterministic & broadband/random excitation |
cases, & the instance of damage occurrence & the extent of
change in system parameters can be detected and be quantified.

LLUSE,
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Conclusions and Future Research Directions

< A simple yet powerful technique that overcomes the
intrinsic limitations of traditional techniques is
developed- This powerful method can be further
improved by:

. Use of different basis functions
. Use of different learning algorithms

Use of data compression techniques

Defining performance matrices and proper damage indices

1
2
3
4. Study the effects of missing data
5
6

. Experimental verification

LLUSE,
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Experimental Verification of Intelligent
Parameter. Varying (IPV) Technique

Solenoids : Accelerometers
7
\
\ Linear servo
Nitinol tendons .- r—ﬂ‘“‘ motor #1

¢
Linear servo -t o AT
motor #2 : Encoder

Figure 3 Experimental shear building model. MUM
7 SOUTHEAST

UNIVERSITY




Experimental Veritication of Intelligent

Rarameter: Varying (IPV) Techmque

Analytlcal Model of the Structure — Shear Beam i I |
\ ‘ ‘WI
3rd Mass —— — X3 (1) > 1 “
2nd Mass —— — x, (1) -
ist Mass —— — x; ()

Base
TR —_—e X, (1
m e

Figure 1 Lamped-mass, shear-building model of a
three-story base excited structure.




Experimental Veritication of Intelligent

Rarameter Varying (IPV) Techmque

Approach for Inducmg the Damage — — — \{
)

- |+ - |«

f<4 3

(a) (b) (c)

Figure 12 (a) Third floor static lateral loading, (b) second floor static lateral loading, and (c) first floor static lateral
loading.



Experimental Veritication of Intelligent

Rarameter Varying (IPV) Techmque

Schematlcs of the Experlment Set Up | - <l

,\\"‘i‘ Mmml
“n k\
Accelerometers
¢ Host .
PC /"‘/‘ ‘
_'— I I—
Signal conditioner I e |
¢ =
5 r
_-j Target 5
PC
AD ‘ /
]

—

Linear servo Encoder
motors
v — v .
‘ Linear servo
. motors
amplifier & X
power supply

Figure 4 Schematic of the experimental set up.
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Experimental Veritication of Intelligent

Rarameter: Varylng (IPV) Techmque

a) Free-vibration tests.

2?“ IH " “’ I |||} [ T —
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Figure 7 Computed inter-story displacements.

o
o

3rd floor (N)
o

$

- = e pww—rerent B - CESINE (ESUSEITIoN BY=

'04-03-02 01 0 041 02 03 04

~ 05

Z

g 0

freed

2

N—O'S( | | | | | | L i i ;

-04 -03 -02 -0.1 0 01 02 03 04

~ 05

Z

g 0

174

~-0.5

1 ' 0 1 ! 1 1 i 1
-04 -03 02 04 0 01 02 03 04
Inter-story displacement (mm)

Figure 8 Identified restoring force profiles for
free-vibration tests.




Experimental Veritication of Intelligent

Parameter. Varying (IPV) Technique

Measuring Inter-story Accel - Identifying Restoring Force Profiless
b) Harmonic Excitation tests.
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o

-0.15 |
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Figure 9 Harmonic excitation: (a) filtered acceleration responses and (b) identified restoring force profiles.
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Experimental Veritication of Intelligent

Identifying Restoring Force Profiles & Structural Damage
c) Damage between the base & 1% floor; Before & After Damage. an R\

(a) (b)
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Figure 14 Identified restoring force profiles associated with harmonic excitation and structural damage between the
base and first floors: (a) 1s before damage and (b) 1s after damage.
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Under Harmonic Excitation




Experimental Veritication of Intelligent

Rarameter: Varylng (IPV) Techmque

Identlfylng Restorlng Force Profiles & Structural Damage
d) Damage between the 15t & 2" floors; Before & After Damage. B

—
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Figure 15 Identified restoring force profiles associated with harmonic excitation and structural damage between the
first and second floors: (a) 1s before damage and (b) 1s after damage.

Under Harmonic Excitation



Experimental Veritication of Intelligent
Parameter. Varying (IPV) Technique

Identifying Restoring Force Profiles & Structural Damage
e) Damage between the 15t & 29 floors; Before & After Damage.
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Figure 17 Identified restoring force profiles associated with earthquake excitation and structural damage between the
first and second floors: (a) 1s before damage and (b) 1s after damage.

Under Earthquake (Broad-Band) Excitation




Other Future/Emerging Research Directions

€ Thoroughly evaluate merits and limitations of Wavelet, IPV,
and EMD, in their application for on-line SHM in a distributed
sensor network environment and for local area damage
detection with limited sensors.

€ Thoroughly evaluate the performance of these techniques on
various damage severity levels; damage allocation; in random
environment and on-line implementation.

€ Quantify and develop an integrated system that can self
select what diagnosis system to use based on the type of data,
availability of the model, type of sensor, UQ and reliability.

€ Develop and evaluate the merits and limitations of Support
Vector Machines and Artificial Immune Systems for SHM.

€ Carry out a thorough study on the use of SHM strategies for
Uncertainty Quantification
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ADDITIONLA SLIDES ON
SPECIFIC RECOMMENDATIONS
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Emerging Research Directions: UQO and SHM

Structure Specification:

Hardware Architecture
System Behavior

Uncertainty Model:

Model Uncertainty
Parameter Uncertaint

Model Integration

Engine System
Diagnostic Progra

Uncertainty
Modeling for
Selected Sensors

Flight Data' eIV 7
| Je=| V.c
Control Devices <:- Health Information Validatio e

LLUS.E,
Aircraft Industry (Airbus) has initiated a focus on UQ integrated with SHM { '} SOUTHEAST

UQ is critical for both system design and maintenance decisions. UNIVERS I ¥

Updating Algorithm




Emerging Research Directions: SVM for SHM

1nar Separating Linear Plane _ Class 1 (Undamaged) S I |
/ The SVM hyper plane .
g separating the data in pe-
= undamaged and damaged e
classes
1091 Class 2 (Damaged) EF =
35 X EL T X :

18 20% Damage

30% Damage

— 10% Damage

The adaptive SVM hyper
lines indicate the health
condition of a structure to
assess its safety margin

116

14

1M2F

1Mr

108

106

104

102

10

SVM can simultaneously assess the structural reliability and UQ.



<*Nonlin
g(X)=3-0.8x] - x,

Where x1 and x2 are ran

iables defined

0,1)

Pf_MonteCaro = 6.9731e-002 with sample humber N=5134 ’

Failure probability obtained with different Kernel function — Nonlinear Case

Radio Basis | Thin Plate

Kernel Type Cubic Function Sp||ne Quadratic Spllne
Failure
Probability 0.0693 0.0678 0.0695 0.122 0.0660

\ Error Rate (%) | 0.6181 2.7692 0.3313 74.9581 | 5.3506 /

A

UNIVERSITY



Emerging Research Directions: AIS for SHM

¢ Artificial Immune System is a computational model based on the self/
non-self discrimination process performed by the T-cells in natural

immune systems

+»» Uses a Negative Selection Algorithm (NSA). Has proved top be very
effective, accurate and reliable in several applications, such as computer
network security analysis, fault detection, etc.

+** In biomedical data classification. AIS has been “trained” to detect the
“normal” vs “carrier” data with high accuracy. Difficult to distinguish.

+* Some result have been shown for SHM by Bo Chen, et al.
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