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!   Significant Growth in Urban Living- More than 50% of 
the World  Population now live in cities. This has 
increased the Importance of Urban Systems safety. 

!   Deteriorating Infrastructure 
!   Lifeline Systems Protection Against Natural Hazards 
!   Visual manual maintenance not reliable and 

impractical, especially for large, complex structures 

The Integrity and Health of a structure, like the human 
body, need to be monitored constantly to enhance 

safety and to prolong their lifespan. 

Why Structural Health Monitoring? 



"   Monitor the system performance 
"  Detect damage 
"  Asses/diagnose the structural health 

condition 
"  Make maintenance decision 

!   Purpose: 

Improvement of 
Structural Performance 

and Safety 

!   Components: 
"  Data Acquisition 
"  Data Analysis 

Damage Interpretation/
Identification 

The 1st International Workshop on SHM, Stanford University, Sept. 18-20, 1997 
The 2nd International Workshop on SHM, Stanford University, Sept. 8-10, 1999 
The 3rd International Workshop on SHM, Stanford University, Sept, 2001 

How to Do Structural Health Monitoring? 



(Rytter, 1993) 

"  Level 1:   Any damage occurs?      
     (Determination that damage is present in the structure ) 
 
"  Level 2:   Where is the damage? 

(Determination of the geometric location of the damage) 

"  Level 3:   How severe is the damage?   
(Quantification of the severity of the damage) 
 

"  Level 4:   Can the system still work?   
(Prediction of the remaining service life of the structure) 

!  Damage: Changes in the structure that adversely affect  
                    its condition. 

Damage Identification Levels 



Key Requirements for Effective, Reliable 
Quantitative SHM Strategies  

!  Minimal Dependence on Prior Knowledge of 
Structure’s Dynamics - So that It can Be Used for Linear 
and Nonlinear Structures 

!  High Sensitivity  - So That It Can Identify Minor and 
Invisible Damage 

!  Low Sensitivity  - To Measurement Noise That is 
Inevitable in Real Life Applications 



Major Developments in SHM Since 1990’s 

!   Some Representative Data Interpretation Schemes: 
"  Modal Based Techniques 
"  Empirical Modal Decomposition Methods (EMD)/Hilbert-

Huang Transform 
"  Wavelet-Based Techniques 

!   More Recent Data Analysis Schemes: 
"  Intelligent Artificial Neural Network Systems 
"  Support Vector Machines  
"  Artificial Immune Systems  

!   Other Recent Research Issues/Challenges: 
"  Uncertainty Quantification & Relevance to SHM 

!   Major Progress in Sensor Technology, Wireless 
Networked Sensing, Sensor Development 



A Few Shortcomings of Common Techniques 

!  High Dependence on Modeling 

!  Insensitivity to Local Damage - Need of Large Number 
of Sensors  

!  Difficulty for On-Line Application 

!  Vulnerability to Measurement Noise 

!  Biased Towards Linear, Nonlinear or Hysteretic 
Structures 

Merits and shortcomings of available SHM schemes need to 
be evaluated to provide a basis for selection of appropriate 
techniques for future intelligent structures 
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Ultimate Goal? 

An Efficient, Reliable, Economic, Feasible, Integrated, Real-
Time System for Predictive Maintenance  
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Structural Health Monitoring: 
  - Damage detection 
  - Damage isolation 
  - Damage assessment 
  - Maintenance decision 
  - Multi-level control  

Advanced wireless sensor network: 
  - Sensing technology 
  - Optimum sensor placement 
  - Data processing techniques 
  - Effects of uncertainties 

Structural Control: 
  - Control devices  
  -  Control algorithms 
  -  Robust Control  

Research for new-generation intelligent aircraft 

Major Area 

State of SHM in Other Fields 
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Rich data in  
in-flight condition 

Real experiment! 
System-level 

MC sample response 

What SHM can do for uncertainty 
quantification and management ? 

•  Verification of SF by real data 
•  Find/Adapt pdf 
•  Reliability Analysis  
•  Remaining Life Prediction 
•  Early Warning for Unscheduled Inspection 
•  Safety Margin, Etc.  

SHM for UQ/Analysis 



Deterministic 
design 

Code-based design 

Approach of safety factor (SF) 
Explicit 

Load safety factor of 1.5 

Implicit 

Conservative decision in 
all phases of design 

Probabilistic 
design 

Probability-based design 

Challenges 

Approach of probability 
density function 
A-basis/B-basis 

material properties 

•  uncertainty in loading  
•  errors in load and stress calculation 
•  accumulated structural damage 
•  variation in material properties  
•  variation in standards 

Intelligent structure 
with Structural Health 
monitoring can help 

SF Compensates everything: 

Selection of 
probabilistic model 

Calibration of 
model parameters 
(insufficient data) 

What are the other 
part? 

Uncertainty 
propagation  

Significant 
computational efforts 

for calculation of 
response statistics 

and reliability analysis 

SHM for Handling Uncertainties 



Classification of SHM Strategies 

!  Detection Capabilities: 
a)   Global Techniques- Only infer the existence of damage 
b)   Local Techniques – Assist in locating the damage   

!  Extent of Prior Knowledge Required: 
a)   Model-Based Techniques- Use explicit mathematical 

descriptions of system dynamics 

b)   Non-Model Based Techniques – Rely on signal 
processing of measure responses. 

 

Both Model-Based and Non-Model-Based have been 
successfully used for  damage detection in structural application 

 



Classification of SHM Strategies 

1.  Model-based Methodologies-   
"  Damage is regarded as a modification of physical 

parameters 

"  Typically rely on parametric system identification using 
linear, time-invariant models.  

"  Shortcomings: 

o  heavy dependence on system modeling 

o  insensitivity to local damages.  

o  inherent dependence on stationary measurement data.  
 



Classification of SHM Strategies 

2.  Non-model-based Alternatives- 
"  Seek to identify damage from changes in dynamic 

characteristics (e.g, natural freq., mode shapes, etc.)   

"  Specific patterns or characteristics of vibration response 
are associated with different structural conditions 

"  Examples: 
o  FT, Short-time FT 
o  Time-Frequency Analysis  

#  Winger-Ville Distribution approach 
#  Empirical Mode Decomposition (Hilbert-Huang Transform),  

#  Traditional modal analysis, dynamic flexibility 
measurements, matrix update methods, Statistical 
Pattern Recognition, etc. 

#  Wavelet Transform  



Classification of SHM Strategies 

3.   Artificial Neural Networks- Used for both model-based 
and non-model-based damage detection in one of two ways: 

"  Their Pattern Recognition capabilities allow the 
identification of damage using response measurements 
from damaged and undamaged structures (non-model 
based approach)  

"  Their System ID capabilities enable the estimation of 
dynamic parameters such as stiffness, mass, and damping 
(model-based approach) 
o  Most published work on System ID has focused on 

parametric modeling using linear, time-invariant models. 

o  However, ANN capability in non-linear function approximation 
has allowed their use in non-parametric modeling and 
System ID (e.g. Black Box approach)   



Focus of This Seminar- Two Research Areas 
and Recommendations for Future Work 

1.    Wavelet-based Methodologies-  (Since mid 1990’s) 

"  Wavelet Analysis for Damage Detection(CWT, DWT) 
"  Wavelet Analysis for detecting sudden & progressive damage 

and the effect of measurement noise 
o  ASCE Benchmark Study Data 
o  Experimental Study with DPRI, Japan 

"  Wavelet packet analysis,  and development of Pseudo Wavelets 
(PWT) for System Identification  

2.     A Special Class of Artificial Neural Networks- 

"  Development of an Intelligent Parameter Varying (IPV) 
approach- without the limitations of Black Box 

"  Application in System ID for Base Isolated Systems and  SHM of 
linear and nonlinear systems 

"  Experimental verification of IPV for SHM application  



1-SHM Research via Wavelet Analysis 

!  Development of a Wavelet Based Approach - for 
detecting sudden or progressive damage.   

"  Using Continuous and Discrete Wavelet Transform 

!  Its Application for data from ASCE Benchmark Study 
"   Use of Wavelet to locate the damage region  

"   Effect of measurement noise  

!  Development of a Pseudo-Wavelet (PWT) - For System 
Identification   

!  Experimental Work - in Collaboration w/ DPRI, Japan  

!  Other Applications (Damage in a composite plate due 
to impact)  



!  Wavelet is a waveform of effectively limited duration that 
has an average value of zero.  This means that it must 
be a window function: 
 

!  Its average value is zero. 

  

!  It is square integrable or, equivalently, has finite energy. 
 

!
+"

"#
"<$ dtt)(

!
+"

"#
=$ 0)( dtt

!
+"

"#
"<$=$ dttt 2)()(

Generation: 
o  by explicit formula  

o  by recursion   

1-SHM Research via Wavelet Analysis 



Mexican Hat 
Wavelet 

 

Haar Wavelet Morlet Wavelet 
 

Daubechies Wavelets 

…. 

Examples of Wavelets: 

             db2                        db3    db4 

1-SHM Research via Wavelet Analysis 



!  Wavelet Transform:  
"  provides a description of how the spectral content of a 

signal changes through time. 
"  breaks up a signal into shifted & scaled versions of 

the original (mother) wavelet, to extract useful 
information 

"  It is a linear transform- Provides time-scale map of 
the signal, scale parameter is inversely proportional 
to frequency, has a constant time-frequency window 
area, has variable time-frequency window resolution 

!  Types of Transformation:  
"  Continuous Wavelet Transform 
"  Discrete Wavelet Transform!

 
 

1-SHM Research via Wavelet Analysis 



Continuous Wavelet Transform 

o  a > 0    ------Scaling Factor 
o  b ! "  ------Shifting/Translating Factor 
o               ----- is a translating & windowing function  satisfying  
                          the admissibility condition: 
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Two Basic Operations in Wavelet Transform 

!      Shifting:# )()( btt !"#"

W=0.1137 W=0.0102 

1-SHM Research via Wavelet Analysis 



!  Scaling: )()(
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Two Basic Operations in Wavelet Transform 
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!  Application for SHM are based on the sensitivity of 
conventional wavelets to singularities in the data.  

!  A Damage Detection and Location technique was 
developed.  Its sensitivity to damage severity, 
measurement noise and modeling accuracy was studied.  

!  Damage Metric Used:   

 A sudden damage = a sudden stiffness loss  
 an abrupt change in acceleration response  
 local maxima of wavelet  transform modulus (Mallat, 1992) 

1-SHM Research via Wavelet Analysis 
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Damage Detection for Sudden and Progressive Damages  
(Hou, Noori, Raymond) 
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Time 
(sec) 

Instantaneous Natural frequency (Hz) 
1st mode 2nd mode 3rd mode 

CWT Modal 
analysis 

CWT Modal 
analysis 

CWT Modal 
analysis 

 5 1.2930     1.2932     3.6181     3.6234     5.2357     5.2360     
15 1.2614     1.2619     3.5918     3.5956     5.0542     5.0586     
25 1.2234 

 
1.2230 3.5553 3.5589 4.8774 4.8824 

3DOF Model with a damageable Spring  

Comparison with Analytical Results  

Wavelet ridges  Instantaneous  
Frequencies  

Instantaneous mode shapes  

Damage Detection for Monitoring Progressive Damage 

1-SHM Research via Wavelet Analysis 



!  Application for ASCE SHM Benchmark Study Data: 
"    Objectives of the Study: 

o  use the wavelet approach to detect and locate a damage 
in time and space 

o  apply wavelet analysis for on-line monitoring 
o  study the sensitivity of the method  to  damage severity 
o  study the effect of measurement noise on the results  
o  study the effect of structural modeling and system ID 

 

1-SHM Research via Wavelet Analysis 



ASCE Benchmark Study 

(Johnson, et al., 2000) 

 
4th floor 
 
 
3rd floor 
 
 
 
2nd floor 
 
 
 
1st floor 
 
 
 
 
ground 

Node Numbering 

1-SHM Research via Wavelet Analysis 



ASCE Benchmark Study Data !
(http://www.tbcad.com/paullam/ascebenchmark.asp). 

! Purpose:  test and compare various damage identification 
techniques 

! Structure Description: a 4 story, 2 bay X 2 bay steel-frame 
scale prototype structure  

! Damage patterns: removing bracing elements in the structure- 
4 out of 5 damage patterns proposed by ASCE and additional 
ones considered (e.g. removing all braces on the 3rd floor)  

! Excitations:  
"  a low-level ambient wind loading at each floor in the y-direction 
"  a shaker force applied on the roof at the center column position 

in i+j direction 

! Structure Model:  12 DOF Model  and 120 DOF Model 

1-SHM Research via Wavelet Analysis 



Excitation: a low-level ambient wind
loading at
each floor in the y-
direction

a shaker force applied on the roof at the center
column position in ji ˆˆ +!

System Model: 12 DOF
symmetric model

120 DOF
asymmetric
model

12 DOF
symmetric
model

12 DOF
asymmetric
model

t=0…5 sec.   - no damage
t=5 sec:         - damage pattern 1
(removing all braces in the 1st story )

Scenario I

t=0…5 sec.   - no damage
t=5 sec.         - damage pattern 2
(removing all braces
in the 1st and 3rd story)

Scenario V

t=0…5 sec.   - no damage
t=5 sec.         - damage pattern 3
(removing one brace in the 1st story)

Scenario II Scenario VII Scenario VI

t=0…5 sec.   - no damage
t=5 sec.         - damage pattern 3
(4) one brace in each of 1st and 3rd story.

Scenario IX Scenario VIII Scenario IX

(5) removing all braces in the 3st story; Scenario IIID
am
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e 
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t=0…5 sec. – no damage
t=5 sec:   removing all braces in the 4th story
t=10sec:  removing all braces in the 2nd story
t=15sec:  removing all braces in the 3rd story
t=20sec:  removing all braces in the 1st story

Scenario IV

ASCE Benchmark Study 
1-SHM Research via Wavelet Analysis 



ASCE Benchmark Study 
!  A Typical  Damage Scenario-  
 

 t=0!5 sec.   - no damage 
 t=5 sec.         - damage pattern 2 
 (removing all braces in the 1st and 3rd story) 

   

 

1-SHM Research via Wavelet Analysis 



Wavelet Analysis for Damage Detection (severe damage) 

Change in the natural frequencies
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!  Damage Pattern 1: Removed all braces, 1st story, at t = 5s 

ASCE Benchmark Study 

1-SHM Research via Wavelet Analysis 



Wavelet Details 

Wavelet Details for Acceleration at Node 15 

Acceleration Response at Node 15 
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Wavelet Analysis for Damage Detection (severe damage) 

ASCE Benchmark Study 

!  Damage Pattern 1: Removed all braces, 1st story, at t = 5s 

1-SHM Research via Wavelet Analysis 



Comparison between Fourier spectra of 
acceleration at node 15, before and after damage  
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Wavelet Analysis for Damage Detection (less severe damage) 

ASCE Benchmark Study 

!  Damage Pattern 3: Removed one braces, 1st story, at t = 5s 

1-SHM Research via Wavelet Analysis 



Acceleration Response at Nodes 15 

Zoom in 
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Wavelet Level1 Details 

Zoom in 

Wavelet Analysis for Damage Detection (less severe damage) 

ASCE Benchmark Study 

!  Damage Pattern 3: Removed one braces, 1st story, at t = 5s 

1-SHM Research via Wavelet Analysis 



!  Damage Pattern- Removing: 

 all braces of the 4th story  at t = 5s 

 + all braces of the 2nd story  at t = 10s 

 + all braces of the 3rd story  at t = 15s 

 + all braces of the 1st story  at t = 20s 
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1st 
floor 

2nd 
floor 

3rd 
floor 

4th 
floor 

Wavelet Analysis for On-Line Damage Detection   

ASCE Benchmark Study 

1-SHM Research via Wavelet Analysis 



(Hera, Hou, and 
Noori 

-Damage Occurrence; 
-Damage Location; 
-Damage Severity 

-Less Model-dependence; 
-Local Damage Sensitivity; 
-Robustness to Noise 

ASCE Benchmark Study 

Wavelet Analysis for On-Line Damage Detection   

1-SHM Research via Wavelet Analysis 



Wavelet Level1 Details 

No measurement noise RMS of Measurement noise =10% RMS
(roof acceleration) 
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Wavelet Analysis for Measurement Noise Effect. 
!  Damage Pattern 2: Removed all braces, 1st & 3rd story, t = 5s 

ASCE Benchmark Study 

1-SHM Research via Wavelet Analysis 



Summary of Wavelet Analysis for ASCE Benchmark Study 

!  A sudden structural damage and the moment when it occurs 
can be detected  
 

!  The region where damage occurred can be identified  
 

!  The wavelet approach has potential for an on-line application. 
 

!  Effectiveness of wavelet approach depends on the 
measurement noise level and damage severity.  
 

!  Wavelet approach is less model-dependent in the sense only 
measurement data are required in the analysis.  

1-SHM Research via Wavelet Analysis 



!  The main capability of Wavelet is due to sensitivity to 
singularities (sudden stiffness loss). How about if the 
measurement did not include the moment when a sudden 
damage occurred? 

Development of a Pseudo –Wavelet Transform-
Based technique (PWT) for System Identification 

!  To use two segments of data, before and after damage, to 
identify the change of the system parameters: 

       natural frequencies  

      modal damping ratios 

Pseudo –Wavelet Transform 

1-SHM Research via Wavelet Analysis 



!  Concept of Pseudo-wavelet was developed based on 
shifting and scaling properties of regular wavelet. 

!  Pseudo-wavelet Transform was used to successfully identify 
system natural frequencies and damping ratios. 

!  Truncated Pseudo-wavelet was proposed to improve 
accuracy of estimates for MDOF systems and general linear 
dynamic systems.  

!  Noise effect was investigated for both measurement & 
excitation: satisfactory results were obtained. 

System Identification Via Pseudo–Wavelet Transform 

1-SHM Research via Wavelet Analysis 
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Application to a 3DOF system 

Pseudo-Wavelet Transform 

A Pseudo-wavelet 

System Identification Via Pseudo–Wavelet Transform 
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System Identification Via Pseudo–Wavelet Transform 

1-SHM Research via Wavelet Analysis 



Experimental Validation Using Shaking Table Test Data of  
A Full-size Two-Story Wooden House (Hou, Noori, Suzuki) 

System Identification Via Pseudo–Wavelet Transform 

1-SHM Research via Wavelet Analysis 



1st-order pseudo-
wavelet transform 

Noised Signal Fourier Spectrum 
First-order PWT 

Time 
Constant 

$n 
(rad/
sec) 

% 

Exact Value 2 4 0.05 
Truncated 

PWT 
(rcut=80%) 

2.02 3.99 0.053 

Error 1% 0.25% 6% 

Results 

2nd-order pseudo-wavelet transform 
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System Identification Via Pseudo–Wavelet Transform 
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t 
t a 

Measurement of traveling wave 

A composite plate impacted at a point with x=0.5 and y=0.7 unit 

Identified impact location (x=0.5, y=0.7 unit) 

Wavelet transform of measurement 

0.5 0.7 

Identification of Impact Loading on  A Composite Plate 
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Wavelet-Packet Based Sifting Process for Damage Detection 

Decomposition of response data of a linear 3DOF system 
and its decomposition by a wavelet-based sifting process 

Response 
data 

3rd mode 
component 

1st mode 
component 

2nd mode 
component 

Fourier 
Spectra 

Comparison with analytical results and results 
from the Empirical Modal Decomposition method 

Instantaneous frequency of the third mode for cases of progressive and sudden damage 

Total Response 

3rd modal  
component 

Instantaneous  
Frequency  

Sudden damage Progressive damage 
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!  Further Extension of the wavelet-based technique for a 
progressive damage pattern; 
 

!  Development of wavelet-based indices for health assessment, 
service life prediction, maintenance decision; 
 

!  Comparative study with other approaches, e.g., the empirical 
mode decomposition, neural network, and Hilbert transform; 
 

!  Improvement PWT–based system identification for cases where 
peaks in the Fourier amplitude response are not well separated. 

!  Develop a wavelet  transform that can detect the instance of damage 
occurrence under broad-band random excitation. 

    

!  Develop a wavelet-based local damage observer using data from a 
single or very small number of sensors to detect occurrence of       
damage in a local critical region. (Progressive damage, Noise effects, 
Auto-diagnosis algorithms, Warning systems, etc.) 

 

Suggestions for Future Wavelet-based SHM Research   



!  Develop an integrated wavelet-based scheme for SHM of large-
scale structural systems using local measurements 

!  Develop a wavelet-based damage isolator to locate damages 
using measurements from multiple sensors. (Damage influence 
region, Damage isolation algorithms, Optimal sensor placement? etc.) 

!  Develop an integrated damage estimator to assess local 
damage severity (Wavelet-based modal analysis for time-varying 
systems?)  

!  An integrated wavelet-based EMD scheme and a NN-based on-
line approximation technique, etc.) 

!   Develop condition-based maintenance guidelines (Structural 
Health history, health condition indices, etc.) 

 

 

Suggestions for Future Wavelet-based SHM Research   



  Motivation of the Research-  
 

To develop a reliable structural health monitoring and damage 
detection technique that can detect the: 

  Presence 
  Location, and 
  Time of damage 

from recorded structural responses using ANN, traditional 
modeling, and system identification techniques. 

What are the main building blocks of such a technique? 

i.  Traditional modeling techniques 
ii.  Traditional system identification techniques 
iii.  Artificial neural networks 

2-SHM Research via Artificial Neural Networks  



  Challenges of the Research-  
  ANN typically involve I/O training to predict the dynamic 
response of a “healthy” structure to known input excitations.  

  This predicted response is compared to the response of the 
same damaged structure to infer information about the 
presence, location, and extent of damage.  

  

  Such methodologies, however, may fail to detect: 
o  authentic damage if the response of the damaged structure 

moves beyond the representative domain of the trained neural 
network.  

o  few research has addressed the detection of damage in 
systems with elasto-plastic and hysteretic restoring force 
characteristics. 

2-SHM Research via Artificial Neural Networks  



2-SHM Research via Artificial Neural Networks  

  Outline of the Research Presentation: 

  Development of an Intelligent Parameter Varying (IPV) 
Method - combining the advantages of Parametric Models with 
Non-Parametric Capabilities of ANN. 

  Application for System Identification of Structures with 
inherent nonlinearities 

  Application in SHM – For detecting presence, location and 
time of damage in linear and nonlinear systems 

  An Experimental Study – For system identification and damage 
detection in linear and nonlinear systems. 

 



  Outcome of the Research-  IPV A Unique nonlinear System ID. 
  

  Detects damage in nonlinear structures under seismic excitation 

  Integrates capabilities of non-parametric radial basis function ANN, (RFBN) 
with a traditional parametric model to identify nonlinear, time varying 
system dynamics (e.g. inelastic and hysteretic restoring forces) 

  Provides functional representations of the system nonlinearities without 
prior knowledge of their constitutive characteristics 

  Reveals the evolution of damage through the identification of restoring 
forces, rather than comparing response characteristics to a “healthy” 
reference state.  

  Uses recorded inter-story relative accelerations as network inputs, avoiding 
the challenges of integrating acceleration responses (Contrary to ANN 
techniques requiring inter-story relative velocities and displacements. 

  The performance of this IPV approach in determining the existence, 
location, and extent  damage shows advantages over wavelet analysis 
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  Background- Traditional Modeling Techniques-  

“White box” “Black box” “Gray box” 

Fully derived from the first principles 
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Solely based on the recorded data 

“White box” “Black box” “Gray box” 

  Background- Traditional Modeling Techniques-  
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A mixture of “white box” and “black box” models 

“White box” “Black box” “Gray box” 

  Background- Traditional Modeling Techniques-  
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  Background- Traditional System Identification Techniques 

  System ID is the process of building mathematical models of a 
dynamic system based on measured data.   

  How It Is Done? By adjusting parameters within a given model until 
its output coincides as well as possible with the measured output.  

  How Do We Know the Model is Good? Comparing the output of 
the model to measurements on data set that was not used for 
identification process.  

  What Types of Models Can Be Used? Difference equation 
descriptions (ARX, ARMAX), all types of linear state-space models, 
black box nonlinear structures (Artificial Neural  Networks), etc.  

  Do We Have To Assume A Model for a Particular Type?  For 
parametric models Yes.  
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  Background- Traditional System Identification Techniques 

System ID consists of four basic steps: 

1.  Gathering experimental data 

2.  Choosing a set of candidate models 

3.  A criterion for selecting the best-fit model 

4.  An iterative optimization process, searching for the best-fit model. 
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Parametric Non-parametric 

Find “optimal parameters” of a “white box” model 
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  Background- Traditional System Identification Techniques   
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Find “optimal functional representation” of the system using   
a “black box” model 
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  Background- Traditional System Identification Techniques   

Parametric Non-parametric 
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  Background- Artificial Neural Networks (ANN) 

  ANN has been inspired by the information processing in the brain.  
Because of their unique capabilities in nonlinear function 
approximation, ANN can be ideally suited for modeling and system ID.  

  Literature shows how ANN can be effectively used for modeling, ID, 
and control of nonlinear dynamic systems.   

  Nomenclature- 
o  Neuron – an information processing unit 
o  Synapse of connecting path- connecting the neurons 
o  Activation function- computes the output of a a neuron 

according to input activation level 
o  Training set- Data used to train the network 
o  Learning rule- algorithm used for testing the network 
o  Testing set- data used for testing the network 
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Nomenclature

3. Artificial Neural Networks

Definitions
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  Background- Artificial Neural Networks (ANN) 
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Structure of a neural network

3. Artificial Neural Networks

Definitions

Input Layer, where the information is presented to the network Output Layer, where the result of non-linear mapping is presented The connecting paths or synapses The processing elements or neurons 

w ww

Network weights 
Hidden Layers 

 
   Background- Artificial Neural Networks (ANN) 
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i.  Inspired by information processing in the brain 
ii.  Learn from their environment 

Input Layer Output Layer

Hidden Layer

  Background- Artificial Neural Networks (ANN) 
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i.  Inspired by information processing in the brain 
ii.  Learn from their environment 
iii.  Radial Basis Functions Networks 

w 

c , ! 

  Background- Artificial Neural Networks (ANN) 
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"Black Box"
Artificial Neural

Network

System
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3. Artificial Neural Networks

"Black box" Approach

  Background- Artificial Neural Networks (ANN) 

2-SHM Research via Artificial Neural Networks  



Typically, "Black box" neural networks are configured arbitrarily
with a large number of system inputs and outputs, and are trained
to provide the complete nonlinear mapping from the m-
dimensional input space to the r-dimensional output space.

When artificial neural networks are implemented using this
approach, little (if any) of the system information that might be
obtained from traditional modeling techniques is utilized.

Therefore, the associations between the neural network
architecture and its weights to the underlying system dynamics
and its parameters are rarely understood or utilized to improve the
performance of the identification process.

3. Artificial Neural Networks

"Black box" Approach

  Background- Artificial Neural Networks (ANN) 
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3. Artificial Neural Networks

"Black box" Approach

Consider the most general form of a nonlinear plant with full state
measurement:

     

Black box intelligent system identification provides a regression estimate
of the entire plant dynamics using past sampled outputs and inputs.

Analogous to Prediction Error Methods, the network weights  constitute a
parameter vector that is iteratively modified, using the Training Set,  in
order to minimize differences between the predicted network output and
the actual system response:

The optimal set of network weights is thus the one that generates the
smallest prediction error on unseen pairs of input-output measurements,
the Testing Set, as quantified by a suitable scalar-valued error cost
function.
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  Background- Artificial Neural Networks (ANN) 
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3. Artificial Neural Networks

"Black box" Approach

Techniques that seek to minimize prediction error are collectively known
as "backpropagation of error" methods, and have been discussed
extensively in the literature (Haykin 1999).  Defining a quadratic error cost
function for N data points:

Analogous to the iterative parameter estimation techniques used in
Prediction Error Methods, the most general backpropagation techniques
consider the error cost function, its gradient, and its Hessian to update
the network weights:

RN is a matrix that modifies the search direction. If selected to be the
identity matrix, the backpropagation process is known as a Gradient
Descent Method and if selected to be the Hessian matrix, it becomes
Gauss-Newton Method.
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  Background- Artificial Neural Networks (ANN) 
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"Intelligent Parameter Varying" (IPV) approach to system
identification incorporates artificial neural networks into a
traditional parametric model, therefore combining the advantages
of parametric models with the non-parametric capabilities of
artificial neural networks.

Artificial neural networks are used to identify the nonlinear, time-
varying portions of the system dynamics,  that would be difficult
to model using traditional approaches.  The resulting model
preserves a direct association between the neural network's
architecture and its weights to the underlying system dynamics.

Noteworthy contributions using this approach have been made by
Masri et al. (1992), Suontausta et al. (1994), and Buckner et al.
(2000, 2002).

3. Artificial Neural Networks

"Intelligent Parameter Varying" Approach

  Background- Artificial Neural Networks (ANN) 

Intelligent Parameter Varying Approach 
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4. Intelligent Parameter Varing Approach

Overview

The IPV approach introduced here would preserve the model structure
without requiring a priori representations of the nonlinearities. Instead,
these terms would be represented by separate artificial neural networks:
                      and                         :

By modeling the nonlinearities via separate artificial neural networks  the
relation between model structure and artificial neural networks
parameters is preserved.
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4. Intelligent Parameter Varing Approach

Overview

Consider a nonlinear system represented by the Linear Parameter
Varying (LPV) model structure:

Here, the model structure is derived using traditional modeling
approaches, but               and                represent unknown constitutive
nonlinearities.
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Intelligent Parameter 
Varying Technique 

Traditional 
Parametric Modeling 

Techniques 

Artificial Neural 
Networks 

Traditional 
System ID 

Techniques 

  Proposed Method- 
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Concept: 

Combines the advantages of parametric and non-
parametric techniques 
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Parametric Non-parametric IPV 
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Concept: 
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Consider: 

i.  A simple three-story “shear building” model 

ii.  Elastic, Elasto-plastic, & Hysteretic restoring force models 

iii.  Two damage mechanisms 

iv.  El Centro 1940 earthquake ground acceleration and 3-Hz 
sinusoid base excitations 

Implementation 
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Varying (IPV) Artificial Neural Networks  



 

x1 

x2 

x3 

1st Floor 

2nd Floor 

3rd Floor 

Ground xg 

( )ux,fxMuCuM !!=+ g!!!!!

gii xxu !=

Shear Building Model 
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In accordance with Newton's 2nd law, the lateral equations of motion can
be expressed:

Where m's represent the floor lumped masses, c's are constant structural
damping coefficients, and f's are the inelastic stiffness restoring forces
of the building.

System Modeling

4. Intelligent Parameter Varing Approach
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Alternately, these state equations can be expressed in terms of story
drifts

Where:

Or in matrix form as:

System Modeling

4. Intelligent Parameter Varing Approach
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To facilitate these simulations, the shear-building model was
parameterized using stiffness and yield displacement matrices K and Xy:

The columns of the stiffness matrix represent the primary and secondary
stiffnesses, while the rows correspond to building floors respectively.
The columns and rows of the yield displacement matrix correspond
similarly to the primary and secondary yield displacements and floors.

System Modeling

4. Intelligent Parameter Varing Approach
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Relative
Displacement

Restoring Force

k1

Elastic Hysteretic Elasto-plastic 

Restoring Force Model 
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Simulations 
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Networks Structures

The stiffness and damping terms can be lumped together as net restoring
forces:

Using the IPV approach three separate RBFN networks were used to
model these net restoring forces:

4. Intelligent Parameter Varing Approach
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Networks Structures

Literature abounds with variations of neural network architectures and
activation functions for system identification; the most common
architecture is a feedforward multi-layer network with hyperbolic tangent
activation functions, the so-called Multi-Layer Perceptron (MLP) (Haykin
1999).

However, the Radial Basis Function Network (RBFN) may be better suited
to the task of system identification for two reasons.  First, the network
uses multi-dimensional Gaussian (or radial basis) activation functions
that, contrary to hyperbolic tangent functions, are localized with respect
to the input space.  As a result, parameter estimates obtained from a
small region of the input space do not adversely affect estimates from
other regions.  Second, because the network output is a weighted sum of
hidden layer outputs, the learning algorithm is very simple and
computationally inexpensive.

4. Intelligent Parameter Varing Approach
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Networks Structures

3R̂3w3u!!

gx!!

0

Network of the 3rd Floor

4. Intelligent Parameter Varing Approach
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Networks Structures

2R̂2w2u!!

gx!!

3R̂

Network of the 2nd Floor

4. Intelligent Parameter Varing Approach
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Networks Structures

1R̂1w1u!!
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Network of the 1st Floor

4. Intelligent Parameter Varing Approach

2-SHM Research via Intelligent Parameter 
Varying (IPV) Artificial Neural Networks  



Networks Structures

The inputs to each RBFN were normalized, and three activation functions
were uniformly distributed along each dimension of the input space
(-0.25, 0.50, and 1.25), resulting in 27 activation functions for each RBFN.

The standard deviations of each activation function were set to 0.5, and
the weights were initially set to zero.  These weights were updated
incrementally using a Training Set consisting of randomly-selected input-
output response data (50% of the entire simulation data).

Training continued until the change in the error cost function for a
Testing Set (the remaining 50% of simulation data) fell below 1% over two
consecutive iterations.

Learning rates of 20, 40 and 60 are used for the 1st, 2nd and 3rd floor
restoring force networks, respectively.

4. Intelligent Parameter Varing Approach
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A Few Important Criteria/Factors: For details see Saadat, 2003.  
The IPV was applied to the acceleration responses of Cases I-VIII to identify the 
Presence, Location, and Time of Damage. 

  IPV incorporated RFBN into the parametric model (governing eqns of 
motion) to identify the restoring forces.  The stiffness and damping were 
combined into net restoring forces R1, R2, R3 

  For a single-output RFBN with N hidden layer neurons, there are 3 
parameters that determine the network output: The network weights, w 
and the neuron centers c (N-element vectors), the neuron spreads, s.  

  Input to each RBFN have different ranges, thus they were normalized 
and 3 basis functions were uniformly distributed along normalized 
dimensions of each input with centers located at –0.25, 0.5 and 1.25, 
resulting in 27 basis functions for each RBFN.  The spread of each 
basis function was specified to be 5.0 (3 times the largest distance 
between basis functions) 

2-SHM Research via Intelligent Parameter 
Varying (IPV) Artificial Neural Networks  



Other Important Criteria/Factors: For details see Saadat, 2003.  

  IPV identifies restoring forces and damage mechanisms without a priori 
knowledge or assumptions regarding the constitutive characteristic.   

  Since the identified restoring forces are represented by and stored in its  
network weights, all network weights, w, were initialized to zero. 

  To ensure that RFBNs properly generalized information from the 
acceleration responses, for each simulation case (I to VIII) the data 
(time samples of ground acceleration and resulting floor accelerations) 
was divided into training and testing (validation) sets.  

  Each training data set consisted of one half of the simulated time 
history, each time sample selected randomly from the simulation data.  
The remaining half of time samples were randomly ordered and used to 
construct the testing (validation) data set. 
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Other Important Criteria/Factors: For details see Saadat, 2003.   

  A standard back-propagation of error training algorithm, based on 
quadratic error cost function, was implemented for training.  This 
training set was implemented in a systematic manner.   

  Training continued until the error cost function, evaluated based on 
prediction errors from the testing data set, fell below 15 over two 
consecutive training epochs, where one epoch continue the use of all 
time samples in training data set to modify the network weights w. 

  Samples of the “identified” restoring forces and “simulated” restoring 
forces for Cases I-VIII are presented in the following. The evolution 
force-displacement characteristics shows the presence of damage.   

  To precisely isolate and identify the occurrence of damage and the time 
of damage, the IPV was implemented in a “snapshot mode,” where 
response data was divided into 1-second time intervals and restoring 
forces were “identified.”  
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Implementation of the radial basis functions networks 
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  Damage Quantification- 
o  Basic idea is monitoring the change in the response of the 

structure, caused by a change in the restoring forces.  Thus, the 
percentage of the change in the response of the systems can be 
used to develop a measure for quantification of the damage.    

  Endurance Estimation-  
o  Basic idea is simulating the structure after occurrence of the 

damage with an excitation of x% of the original one in order to 
compare the new structural response against the pre-defined 
threshold. 

 
Once the time and location of a damage in the system is determined 
one must identify the severity of the damage and consequently 
estimates the remaining life of the structure.  
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Simulations 
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Estimated restoring forces and Damage Propagation 

Case I 

3-Hz sinusoid 

Elastic 

Restoring force initially elastic and remains elastic but “softens” 
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Case I 

3-Hz sinusoid 

Elastic 

3.5 – 4.5 sec 

(a): Vs. Disp. 

(b): Vs. Time 

      1-Second “snapshot” of the “estimated” restoring forces. Time of damage 
occurrence. Changes in restoring force characteristics readily identified.  

Shows the time the restoring force starts to “soften” 
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Restoring force initially elastic but severely softens and plastic deformation 

Case V –  

3HZ Sinusoid  

and  

Case VI –  

El Centro 1940 

Elasto-Plastic 

Estimated restoring forces and Damage Propagation 

!"# !$ # $ "#
!#%$

#

#%$
&'
( )*
+,,
'

!"# !$ # $ "#
!#%$

#

#%$

-.
( )*
+,,
'

!$ # $
!#%$

#

#%$

"/
0 )*
+,,
'

12+30452)64/7+38292.0):99;
:3;

!-# # -#
!#%$

#

#%$

&'
( )*
+,,
'

!-# !"# # "# -#
!#%$

#

#%$

-.
( )*
+,,
'

!-# !"# # "# -#
!#%$

#

#%$

"/
0 )*
+,,
'

12+30452)64/7+38292.0):99;
:<;

!"#$%&'()*+,'-.&/0"1"&.'2••••3'4/.'450$46'2−−−−3'/&0'%&708%"/#'18%5&7'293,'
243':47&';<'2=3':47&';-)'

!

2-SHM Research via Intelligent Parameter 
Varying (IPV) Artificial Neural Networks  



!

! "#

!"#$ !"#% " "#% "#$

!&

!"#'

"

"#'

&

()*
+,
-..
)

!"#' " "#'
!%

!&

"

&

%

%/
* +,
-..
)

!"#' " "#'

!%

!&

"

&

%

&0
1 +,
-..
)

23-41563+*507-48393/1+:99;
:4;

(#' $ $#'

!&

!"#'

"

"#'

&

()*
+,
-..
)

(#' $ $#'
!%

!&

"

&

%

%/
* +,
-..
)

(#' $ $#'

!%

!&

"

&

%

&0
1 +,
-..
)

<593+:038;
:=; !

!"#$%&'()*(+',-./01230'24'"5&-3"4"&5'-&3'%&032%"-#'42%6&0'789'42%':.0&';;+'
7.9'<0)'%&=.3"<&'5"0/=.6&>&-3?'7@9'<0)'3">&?'@&42%&'.-5'.43&%'5.>.#&'729'?'A)BC()B'0&62-50)'

!"#$ !"#% " "#% "#$

!&

!"#'

"

"#'

&
()*
+,
-..
)

!"#' " "#'
!%

!&

"

&

%

%/
* +,
-..
)

!% !& " & %

!%

!&

"

&

%

&0
1 +,
-..
)

23-41563+*507-48393/1+:99;
:4;

(#' $ $#'

!&

!"#'

"

"#'

&

()*
+,
-..
)

(#' $ $#'
!%

!&

"

&

%

%/
* +,
-..
)

(#' $ $#'

!%

!&

"

&

%

&0
1 +,
-..
)

<593+:038;
:=; !

!"#$%&'()*B+',-./01230'24'"5&-3"4"&5'%&032%"-#'42%6&0'789'42%':.0&';D+'
7.9'<0)'%&=.3"<&'5"0/=.6&>&-3?'7@9'<0)'3">&?'@&42%&'.-5'.43&%'5.>.#&'729'?'A)BC()B'0&62-50)'

!

      1-Second “snapshot” of the “estimated” restoring forces. Time of damage 
occurrence. Changes in restoring force characteristics readily identified.  

Case IV- 

El Centro 1940 

Elasto-Plastic 

3.5 – 4.5 sec 

(a): Vs. Disp. 

(b): Vs. Time 

Shows the time the restoring force starts plastic deformation. 
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Case VIII 

El Centro 1940 

Hysteretic 

Estimated restoring forces and Damage Propagation 

       Primary column stiffness already reduced due to previous structural 
damage, and excursion into hysteretic behavior.  
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Case VIII 

El Centro 1940 

Hysteretic 

13.5 – 14.5 sec 

(a): Vs. Disp. 

(b): Vs. Time 

Shows additional softening from structural damage at 14.004 and  
14.142 seconds, and hysteretic degradation/damage.  

      1-Second “snapshot” of the “estimated” restoring forces. Time of damage 
occurrence. Changes in restoring force characteristics readily identified.  
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Effects of ANN parameters on the IPV Technique 

•  Gaussian basis functions parameters 

i.  Number 

ii.  Location, and 

iii.  Spread of the basis functions 

•  IPV accuracy is measured by 

i.  Error cost function on the test set, and 

ii.  Total number of the training epochs 

2-SHM Research via Intelligent Parameter 
Varying (IPV) Artificial Neural Networks  



Local: their support covers a small range of input space 
giving weighted local averages in input space. 
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Global: their support covers a large range of input space  
allowing the dispersion of properties of the estimated 
function. 
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Location of the basis functions: 

–  Fixed: 
•  the basis functions can be chosen in a random or 

uniform fashion from the input data space depending 
on the distribution characteristics of data. 

–  Float: 
•  the basis functions can be chosen in a self-

organized fashion or supervised learning process. 

 

Basis Functions
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Learning Algorithms

Neural networks can be classified based upon Learning 
algorithm used for updating the weights, 
o  Error-Correction Learning     
o  Hebbian Learning 
o  Competitive Learning 
o  Boltzman Learning 
o  Supervised Learning 
o  Reinforcement Learning 
o  Unsupervised Learning 
o  And more  
  

2-SHM Research via Intelligent Parameter 
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A Total of 1792 simulations were conducted (224 for each of the 8 cases) 

"  Simulations for each case arranged into two sets according to the no. 
of Gaussian basis functions  for the networks applied for each floor.  

"  For the 1st & 2nd simulation sets 2 and 3 basis functions used along 
normalized input space dimensions, resulting in a total of 23=8 and 
33=27 basis functions for each network, respectively.   

"  Each group was divided into 4 groups according to the Gaussian 
basis function locations, where each group consisted of 28 
simulations for different Gaussian basis function spreads, ranging 
from 0.0625 to 40.0. 
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      Number and location of Gaussian basis functions for 
Simulation Set 1, Groups I to IV. 
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      20 locations of Gaussian basis functions for Simulation Set 
2, Groups I to IV. 
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Case VIII 

El Centro 1940 

Hysteretic 

(a): 2 basis functions 

(b): 3 basis functions 

      Effects of basis function spreads on error cost function, 
Simulation Case III, for Simulation Set 1 and Set 2 
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      Decreasing/Increasing in error cost function as Gaussian basis 
function spreads increase. 



Total number of the training epochs 

Case VIII 

El Centro 1940 

Hysteretic 

(a): 2 basis functions 

(b): 3 basis functions 

      Effects of basis function spreads on total number of training 
epochs, Simulation Case III, Simulations Sets 1 and 2.  
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      Decreasing/increasing in computational time due to dependency on 
Gaussian basis function spreads.    
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      Spread of Gaussian basis functions are important- Gaussian 
basis function over the normalized input with different 
spreads, located at 0, 0.5 and 1. 

(a): Gaussian at 0 

(b): Gaussian at 0.5 

(c): Gaussian at 1 
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         As the Gaussian basis function spreads increases, the changes in 
function value over the range 0 to 1 becomes smaller.   
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     Weight distribution of the radial basis functions networks for 
Simulation Case VIII. 2 Gaussian basis functions at 0 and 1.    

23 = 8 
Case VIII 

El Centro 1940 
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These results suggested selection of 

"  Two Gaussian basis functions 

"  Located at the limits of normalized input range, with 

"  Spreads of 10  
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      Estimated restoring forces- with changes to the no. of 
Gaussian basis functions and their spread.  

Case I 

3-Hz sinusoid 

Elastic 
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1-second “snap shot” of the estimated restoring forces 

Case I 

3-Hz sinusoid 

Elastic 

3.5 – 4.5 sec 

(a): Vs. Disp. 

(b): Vs. Time 
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Estimated restoring forces 

Case VIII 

El Centro 1940 

Hysteretic 
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1-second “snap shot” of the estimated restoring forces 

Case VIII 

El Centro 1940 

Hysteretic 

13.5 – 14.5 sec 

(a): Vs. Disp. 

(b): Vs. Time 
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       Improvement in IPV accuracy and required computational 
time.  Arbitrary RFBN parameters:  Blue bar;  Optimized RFBN 
parameters: Red bars.   
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Effects of Measurement Noise on the IPV Technique 

Noise is an undesired disturbance within the frequency band of 
interest, introduced by man-made and natural sources that distort the 
information carried by the signal.  The following equation is used when 
identifying signals subject to measurement noise. 

!
"

#
$
%

&'=
Power Noise Total
Power SignalPeak 

log10SNR

)( 0.40        )( 02.6 dBSNRdB !!
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Estimated restoring forces in a noisy environment 

Case VIII 

El Centro 1940 

Hysteretic 

SNR = 6.02 (dB) 
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Estimated restoring forces 

Case VIII 

El Centro 1940 

Hysteretic 

SNR = 40.0 (dB) 

2-SHM Research via Intelligent Parameter 
Varying (IPV) Artificial Neural Networks  



1-second “snap shot” of the estimated restoring forces 

Case VIII 

El Centro 1940 

Hysteretic 

SNR = 40.0 (dB) 

(a): Vs. Disp. 

(b): Vs. Time 
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Effects of Measurement Noise on the IPV Technique 

•  What SNR level is acceptable? 

Case VIII 

El Centro 1940 

Hysteretic 

      Cross-Correlation factors between identified and actual 
values of net restoring forces vs SNR: Case VIII.  
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"  A simple yet powerful technique that can 
1.  Identify the instance of the damage occurrence 
2.  Identify  the substructure where the damage is located 
3.  Quantify the extent of damage, from system parameters 
4.  Estimate the remaining life of the structure  
5.  Can be implemented solely in time domain 
6.  Can be applied to non-linear time-varying systems 
7.  Be robust with respect to measurement noise 
8.  Can be tailored/parameterized  accordingly (Model/System ID Based) 
9.  Be used in both deterministic & broadband/random excitation 

cases, & the instance of damage occurrence & the extent of 
change in system parameters can be detected and be quantified. 

Conclusions and Summary 



"  A simple yet powerful technique that overcomes the 
intrinsic limitations of traditional techniques is 
developed-  This powerful method can be further 
improved by: 

1.  Use of different basis functions 

2.  Use of different learning algorithms 

3.  Use of data compression techniques 

4.  Study the effects of missing data 

5.  Defining performance matrices and proper damage indices 

6.  Experimental verification 

Conclusions and Future Research Directions  



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Experimental Set Up- The Prototype Structure 



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Analytical Model of the Structure – Shear Beam 



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Approach for Inducing the Damage 



Schematics of the Experiment Set Up 

Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Measuring Inter-story Displ - Identifying Restoring Force Profiles 
a) Free-vibration tests. 



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Measuring Inter-story Accel - Identifying Restoring Force Profiles 
b) Harmonic Excitation tests. 



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Identifying Restoring Force Profiles & Structural Damage  
c) Damage between the base & 1st floor; Before & After Damage. 

Under Harmonic Excitation 



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Identifying Restoring Force Profiles & Structural Damage  
d) Damage between the 1st & 2nd floors; Before & After Damage. 

Under Harmonic Excitation 



Experimental Verification of Intelligent 
Parameter Varying (IPV)  Technique 

Under Earthquake (Broad-Band) Excitation 

Identifying Restoring Force Profiles & Structural Damage  
e) Damage between the 1st & 2nd floors; Before & After Damage. 



!  Thoroughly evaluate merits and limitations of Wavelet, IPV, 
and EMD,  in their application for on-line SHM in a distributed 
sensor network environment and for local area damage 
detection with limited sensors. 

!  Thoroughly evaluate the performance of these techniques on 
various damage severity levels; damage allocation; in random 
environment and on-line implementation.  

!  Quantify and develop an integrated system  that can self 
select what diagnosis system to use based on the type of data, 
availability of the model, type of sensor, UQ and reliability.   

!  Develop and evaluate the merits and limitations of Support 
Vector Machines and Artificial Immune Systems for SHM.  

!  Carry out a thorough study on the use of SHM strategies for 
Uncertainty Quantification   

!

Other Future/Emerging Research Directions  



and 
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SPECIFIC RECOMMENDATIONS 



Model Integration 

Engine System 
Diagnostic Program 

Uncertainty Model: 
Model Uncertainty 

Parameter Uncertainty 

Structure Specification: 
Hardware Architecture 

System Behavior  

Uncertainty 
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Selected Sensors 
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Health Information Control Devices 

Emerging Research Directions: UQ and SHM 

         Aircraft Industry (Airbus)  has initiated a focus on UQ integrated with SHM 
        UQ is critical for both system design and maintenance decisions.  



The SVM hyper plane 
separating the data in 

undamaged and damaged 
classes 

The adaptive SVM hyper 
lines indicate the health 

condition of a structure to 
assess its safety margin 

Emerging Research Directions: SVM for SHM 

         SVM can simultaneously assess the structural reliability and UQ.  



Different Kernel Functions
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!Nonlinear Limit State Function

2
2
18.03)( xxXg !!=

Failure probability obtained with different Kernel function – Nonlinear Case

5.350674.95810.33132.76920.6181Error Rate (%)

0.06600.1220.06950.06780.0693Failure 
Probability

SplineQuadraticThin Plate 
Spline

Radio Basis 
FunctionCubicKernel Type

Where x1 and x2 are random variables defined 
by Normal distribution N (0,1)

Pf_MonteCaro =  6.9731e-002 with sample number N=5134Pf_MonteCaro =  6.9731e-002 with sample number N=5134

Results 

     SVM can assess limit states and reliability. Both are important in SHM 

Emerging Research Directions: SVM for SHM 
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